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Abstract: The spreading of wildfires in forests is a complex natural phenomenon that depends on 
many different variables (such as the fuel, the geography of the area, the weather, etc.). We 
discuss different methods based on DEVS and cell-DEVS, which can be used to speed up the 
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parallel simulation environment, allowing finding varied results faster than real-time. 
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1 Introduction 

Modelling and simulation (M&S) has been widely used for 
studying the behaviour of complex systems in the 
environmental sciences. In particular, the spreading of forest 
fires is a complex phenomenon that many have tried to 
study using M&S software, as in a real life situation, one 
wants to predict how the fire will spread, and to have 
mechanisms to study different scenarios. The behaviour of 
wildfires depends on many different interrelated variables 
such the weather, the topology of the geographical area, the 
kind of vegetation (fuel) burning, etc., which makes it very 
difficult to be predicted. These aspects make it very difficult 
to build tools to predict the fire behaviour in real time  
(and preferably, faster than real-time which would enable 
fire experts to plan heuristics to control the spreading 
quickly and safely). 

Many authors in this research area have focused  
on grid-based methods (in which one divides the physical  

area of interest into cells, with each cell exhibiting the  
same behaviour of the others) including Berjak (2002), 
Balbi et al. (1999), Vasconcelos et al. (1995), Rothermel 
(1972), Barros and Ball (1998), Johnston et al. (2008) and 
Wang and Wainer (2014). Most of these cellular modelling 
methods discretise space and time; and the model rules are 
computed at regular intervals. Using these discrete-time 
methods, the execution performance can be poor (especially 
for large models) as all the cells are computed on every 
timestep (which is not necessary, as we are only interested 
in the areas of fire activity). In order to deal with these 
problems, some authors proposed simplifying the 
complexity of the equations, using cellular automata (CA) 
as a mechanism for defining simple rules for the model’s 
definition (Gutowitz, 1995). As discussed in Section 3 and 
in Bonaventura et al. (2013), this has a cost in the precision 
of the simulation. 

Instead, the research presented in this article focuses on 
a set of new techniques that can be applied to building 
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advanced fire spreading and other environmental models. 
The methods are based on modelling the spreading 
phenomenon using discrete-event cellular models, and in 
automating the detection of the activity in the area. These 
ideas, which appeared first in Wainer and Zeigler (2000), 
are based on a combination of cellular models, discrete 
events systems specifications (DEVS) (Zeigler et al., 2000), 
and automated activity detection (Wainer and Zeigler, 2000; 
Muzy et al., 2002; Wainer, 2004; Bolduc and Vangheluwe, 
2003; Muzy et al., 2005) Although these methods are based 
on DEVS and cell-DEVS formalisms (Wainer, 2009;  
Van Schyndel et al., 2014), which originally focused on 
discrete-event models, they have been recently extended for 
M&S of continuous systems (Bonaventura et al., 2013; 
Cellier and Kofman, 2006; Zeigler, 2005; Kofman, 200; 
Nutaro, 2003; Kofman and Junco, 2001; Giambiasi et al., 
2000). Most of these techniques are based on the concept  
of quantised-DEVS systems (Q-DEVS), which represent 
continuous signals as a discrete-event approximation, 
represented by the crossing of an equal spaced set of 
boundaries (Zeigler, 1998). These research efforts showed 
that the discrete event methods in general (and DEVS in 
particular), present several advantages for M&S of 
continuous and hybrid systems: 

• computational time reduction: for a given accuracy, the 
number of calculations can decrease 

• hierarchical and modular modelling, which enhances 
the modelling activities 

• seamless integration with models defined with other 
modelling techniques 

• simulation of discrete time models: they can be seen as 
particular cases of discrete event methods 

• generality: the discrete event paradigm provides a 
uniform theory for the M&S of systems with both 
continuous and discrete components. 

The research presented here deals with different problems in 
currently used methods. One of the main contributions is 
that the models can use a simple set of equations, which can 
be modified by non-experts in the field as they learn about 
the phenomenon under study (providing evolvability,  
i.e., the ease for modifications and model evolution). The 
article also explores how these methods can decrease the 
number of messages used in the simulation (and hence  
the execution time, particularly if the models are executed 
in distributed memory computing devices, where the 
communication costs can be high). This improvement in 
performance has a cost of increased error in the simulation 
that can degrade the quality of the results obtained.  
The methods presented are based on techniques with 
bounded error and convergence, and we introduce varied 
experimental examples showing how the error can be 
limited while gaining in performance. 

Another issue to be discussed is based on the traditional 
way of collecting experimental data to derive the equations  

 
that determine the temperature of a cell. As all existing 
models use equations based on the time advance at a 
specific time during the burning phase, many of the  
current implementations are not efficient, and they propose 
simple fixes that try to solve this problem in the best 
possible way. Instead, the methods in this paper require a 
shift in the experimental phase, as we need to find the 
equations to determine the time the cell will pass a 
boundary (instead of computing the values of the equations 
as a function of time). This value, determined by the 
quantum of a Q-DEVS model, should be used as a function 
of the current temperature. We will discuss how to combine 
these methods with dead reckoning algorithms (Lin, 1995), 
which contrasts with the traditional method of using an 
equation (fit from experimental data) that determines the 
temperature of a cell as a function of time. 

2 Background 

As discussed in the Introduction, the spread of fire depends 
on many different variables such as the material fuel, slope 
of the terrain, geographical information of the area, weather, 
etc. Many of the simulation-based methods used to study 
this phenomenon are based on extensions to the partial 
differential equations formalism, but new formalisms have 
been defined. In this section we introduce some of these 
formalisms, and we then focus on that have been employed 
for modelling and simulating forest fires. 

2.1 Formalisms for forest fire M&S 

In the last 20 years, numerous authors used cellular 
computing methods; in particular, CA (Gutowitz, 1995) for 
modelling and simulating forest fires. CA are n-dimensional 
infinite lattices whose elements hold a state variable and a 
simple computing apparatus (Gutowitz, 1995). These local 
computing functions run synchronously and in parallel, 
using the present cell and neighbours. CA have been used in 
the environmental sciences (Dzwinel, 2004; Bandini and 
Pavesi, 2002; Bianchini et al., 1999; Inghe, 1989) and, in 
particular, in fire spreading M&S (Berjak, 2002; Balbi et al., 
1999; Vasconcelos et al., 1995; Rothermel, 1972; Barros 
and Ball, 1998; Johnston et al., 2008). 

The synchronous evolution of CA poses constraints in 
the precision of the simulation, reducing performance. 
Likewise, many of the physical systems in the 
environmental sciences are asynchronous in nature, and 
their implementation using synchronous algorithms is not 
natural. Furthermore, the discrete time used by CA makes it 
difficult to handle time-triggered activity in each of the cells 
or changes in the timing of the cells. Instead, cell-DEVS 
(Wainer, 2009; Van Schyndel et al., 2014), an extension to 
DEVS (Zeigler et al., 2000), focuses on solving these 
problems. Using cell-DEVS, a cellular model is described 
as a discrete event cell space in which explicit delays can be 
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used to model the cell’s timing properties accurately  
(a sketch of cell-DEVS is presented in Figure 1). 

Figure 1 Informal definition of a cell-DEVS model 

 

Each cell of a cell-DEVS model is a DEVS atomic model, 
and a procedure for coupling cells is defined based on the 
cell’s neighbourhood relationship. Each cell uses a  
local computing function (τ), and explicit timing delay 
constructions (d). As the delays use a continuous time base, 
they allow accurate timing representation, providing an 
elegant mechanism for dealing with timing behaviour. The 
hierarchical nature of DEVS also permits the integration of 

these cellular models with others defined using different 
formalisms, resulting in enhanced facilities for modelling of 
complex systems [a detailed definition of DEVS and  
cell-DEVS specifications can be found in Wainer (2009) 
and Van Schyndel et al. (2014)]. Inertial and transport 
delays allow the definition of complex behaviours for each 
cell, improving the definition for each of the submodels. 
Transport delays have anticipatory semantics, that is, every 
output event is delayed. Inertial delays allows to represent 
more complex temporal behaviour because they have 
preemptive semantics and an event scheduled for a future 
time will not be necessarily executed. 

Figure 2 depicts informally the basic contents for an 
atomic cell. Upon the occurrence of an external event, the 
local function τ is executed, consuming the inputs N. As the 
influences must be activated only when the influencing cell 
changes (Zeigler et al., 2000), the result of the local 
computing function will be transmitted only when the state 
changes (s ≠ s’). In that case, the state change is transmitted 
after a delay of d time units. A cell will be active while 
external events are received or internal events are 
scheduled. The cell passivates only when there are no 
further scheduled events to be transmitted. 

Figure 2 Informal description of an atomic cell, (a) transport delays (b) inertial delays 

  
(a)       (b) 

Figure 3 (a) A cell, its neighbourhood and the neighbour’s list (b) Connecting the output ports of cell I, j (using the neighbourhood list) 
(c) Connecting input ports of cell I, j (using the inverse neighbourhood list) 

 

 

Neighbourhood list: 
{(0, –1), (0, 0), (0, 1), (–1, 0)} 
Inverse Neighbourhood list: 
{(0, 1), (0, 0), (0, –1), (1, 0)} 
Note: –1: left, up; 

1: right, down 
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A sketch of this procedure can be seen in Figure 3.  
Figure 3(a) shows the neighbourhood of cell (i, j) and its 
representation using the neighbour’s list. Figure 3(b) shows 
how the first output port of cell (i, j) is connected  
with the first input port of the first neighbour in the  
list; the second port with the second neighbour, etc. Instead, 
for the input ports, the connection is done through the 
inverse neighbourhood list. For each pair (i, j) in the 
neighbourhood, the pair (–i, –j) must be included in this list. 

Finally, two extra sets are needed. Xlist is a list of cell’s 
positions where the model’s external events are received. 
Ylist is a list of cell’s positions whose outputs will be 
collected to be sent to other models in the hierarchy. The 
values of these cells will be considered the inputs and 
outputs of the complete cell space. 

DEVS and cell-DEVS simulators usually evolve by 
means of event messages. The overhead produced by these 
intermodule interactions could be high, and in that case, the 
computing time employed in the synchronisation of the 
active cells can overrule the performance improvements of 
the asynchronous algorithms. There is always a break-even 
point where discrete-event cellular models have worse 
performance than their discrete-time versions (therefore, a 
modeller must decide on the right method to use). From 
now on, we assume that a discrete-event simulation 
provides faster results than the corresponding discrete-time 
CA, or that the modeller is interested in other advantages 
provided by DEVS, such as model interoperability and 
integration (and we focus on techniques to improve the 
performance of these simulations even further). In Wainer 
and Giambiasi (2001), we showed varied results comparing 
the performance of models using discrete-time and  
discrete-event cell spaces. In general, a discrete time model 
has a constant delay for each generation (because all cells 
are scanned, and always in the same order). Instead, the 
discrete event transition increases linearly depending on the 
number of active cells (due to the time spent handling the 
event list). The performance of the traffic model improves 
in several orders of magnitude depending on the complexity 
of the models used (which included traditional models like 
the Life game, and complex ones based on traffic 
simulation). 

Although DEVS was defined as a discrete-event M&S 
methodology, it has been recently extended to include 
continuous and hybrid systems. Most of the techniques are 
based on quantised systems (Q-DEVS), whose main idea is 
to represent continuous signals by the crossing of an equal 
spaced set of boundaries (called the quantum). This 
operation reduces substantially the frequency of message 
updates, while potentially incurring into error (Zeigler, 
1998). As seen in the figure, when using Q-DEVS, the 
outputs are only transmitted when its difference with the 
previous value is larger than a threshold. A continuous 
signal is thus represented by the crossings of an equal 
spaced set of boundaries, and by means of a quantiser, an 
artefact that checks for the boundary crossings. This 
approach requires a fundamental shift in thinking about the 
system as a whole: instead of determining what value will a 

dependent variable have at a given time (its state), we must 
determine at what time a dependent variable will enter a 
given state. When applying the quantised state systems 
(QSS) method (Cellier and Kofman, 2006; Kofman and 
Junco, 2001), the continuous or hybrid signals are 
represented using quantisation and hysteresis. In Cellier and 
Kofman (2006) and Kofman and Junco (2001), it was 
proven that, when the hysteresis width is set equal to the 
quantum size, we obtain the smallest possible error. This 
means that if a value changes its direction with respect to 
the last threshold value, the next value will have to change 
two regions to be transmitted. The idea of adding hysteresis 
is to change the quantum value to the double its size when 
there are direction changes. Therefore, oscillations can only 
be large, and cannot occur instantaneously. This provides 
strong stability, convergence and error bounded properties, 
as the number of updates is limited by the hysteresis 
function, and it reduces the number of computations. 

In quantised cell-DEVS (Wainer and Zeigler, 2000), 
each cell is equipped with a quantiser, and the cell’s state 
will be only informed to the neighbouring cells if it crosses 
the boundary defined by the quantum size. This is shown in 
Figure 4. The idea is that every cell includes a quantiser q, 
the value produced by the local computing function τ is 
quantised, and this value is then compared to the quantum 
threshold. If the boundary was reached, an output is 
provided. This output is delayed d time units using transport 
or inertial delays. Instead, if the threshold was not reached, 
the change is not sent to other models. A detailed discussion 
on how to choose the quantum size for QSS simulations can 
be found in Cellier and Kofman (2006). 

Figure 4 Quantised cell-DEVS atomic cell 

 

The performance of these models can be improved by 
adding dynamic quantisation, which was defined in Wainer 
and Zeigler (2000). Using this method, one can reduce the 
simulation error by improving the precision of the local 
computations. The numerous experiments carried out in 
Wainer and Zeigler (2000). showed that, using this method, 
the error in the simulation is reduced when the cells 
analysed were far from the more active ones. Based on these 
results, two heuristics for dynamic quantum adjustments 
were defined: 

a Reduce the quantum of the most inactive cells to 
improve the precision of the inactive cells. Using a 
quantiser, a very active cell can appear as quiescent. 
Therefore, if the quantum is reduced, the error 
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introduced can be improved. In addition, the quantum is 
increased for the most active cells, improving the 
overall execution time. 

b Increase the quantum of the most inactive cells to make 
them to passivate faster. These cells are quickly 
eliminated from the simulation. Likewise, the most 
active cells will have higher quanta and smaller error. 

This was the first attempt in automating the detection of 
activity in cellular models, and, as we will show in the 
following sections, these strategies can help in improving 
the simulation speed, introducing small error. The use of 
quantised DEVS deactivates the cells in fewer simulation 
steps, and the dynamic adjustment improves these results 
further (other conditions, as the shape and size of the 
neighbourhood and the dimension of the cell space are also 
a major influence in performance, and the modellers should 
consider these carefully). 

The tests introduced in the rest of this paper were 
carried out using the CD++ toolkit (Van Schyndel et al., 
2014; Wainer and Liu, 2009; Wainer, 2002), which allows 
implementing DEVS and cell-DEVS models. CD++ has 
been used in numerous areas, including urban traffic, 
environmental science, biological systems, chemistry, etc. 
(Wang and Wainer, 2014; Bonaventura et al., 2013;  
Van Schyndel et al., 2014; Liu and Wainer, 2007; Wainer 
and Davidson, 2007). CD++ atomic models can be 
programmed and incorporated into a basic class hierarchy 
programmed in C++, while coupled and cell-DEVS models 
are defined using built-in languages. 

2.2 Forest fire Simulation and DEVS 

In this section, we briefly discuss the related work that has 
been done recently in the area of forest fires simulation, in 
particular those using DEVS. In general, these models 
compute the temperature of a cell at discrete timesteps, 
usually as an averaging function of its own temperature and 
that of its neighbours. Once ignited, the cell’s temperature 
increases to a peak and then falls back down, modelling the 
exhaustion of fuel in the cell. 

One of the most popular models in this field is due to 
Rothermel (1972). Based on the environmental and 
vegetation conditions, this model computes the spread ratio 
(i.e., the distance and direction the fire moves in a minute) 
and the intensity of the fire. Three parameter groups 
determine the fire spread ratio: 

a vegetation type (caloric content, mineral content and 
density) 

b fuel properties (the vegetation is classified according to 
its size and type) 

c environmental parameters (wind speed, humidity and 
field slope). 

The Northern Forest Fire Laboratory (NFFL) model 
classifies the vegetation in 13 groups, representing the 
majority of existing forest types in this region. When 
Rothermel’s rules are applied to a fuel model using given 

environmental parameters (the speed and direction of the 
wind, the terrain topology and the dimensions of the cellular 
space) it can determine the spread ratio in every direction. 
Different authors introduced DEVS models based on 
Rothermel’s rules (i.e., Vasconcelos et al., 1995; Barros and 
Ball, 1998), and we introduced a cell-DEVS version of 
Rothermel’s model in Wang and Wainer (2014) and Wainer 
and Castro (2010) and an extended version using the 
FireLib Library (Bevins, 2011) in Liu and Wainer (2007, 
2010a). 

The DELTA environment (Barros and Mendes, 1997) 
deals with wildfire spreading M&S by including dynamic 
structure changes. The idea is to make easy the change of 
parameters dynamically, even in the middle of the 
simulation. This particular model was tested and compared 
against many land types, fuel types, topographies and fire 
spreading information. The principal benefit of using  
DS-DEVS was the improved use of resources when running 
the simulation, as the formalism only runs over active cells, 
and the inactive ones are kept passive for any given time. 

Another interesting example of the use of DEVS for fire 
spreading (that we will use to illustrate the proposed 
techniques in the rest of the paper) was presented in Muzy 
et al. (2005). The model is based on experimental results 
obtained using a 1 m2 testbed, using earth and pine  
needles as fuel, and no wind or slope (Balbi et al., 1999). 
The result of the experiments produced a one-dimensional 
semi-empirical model in which the temperature of each cell 
is represented by a PDE. In this PDE, the energy emitted by 
the cell was considered proportional to the difference 
between the temperature of a cell and the ambient 
temperature, as represented by the following equations: 

( )   in the domainv
a

T σk T T K T Q
t t

∂ ∂
= − − + Δ −
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 (1a) 

0 for an inert cellvσ
t

∂
=

∂
 (1b) 

for a burning cellv
v

σ ασ
t

∂
= −

∂
 (1c) 

( , , )    at the boundaryaT x y t T=  (1d) 

( , ,0)      for the non burning cells at 0aT x y T t= =  (1e) 

( , ,0)    for the burning cells at   0igT x y T t= =  (1f) 

Here, Ta is the ambient temperature, Tig is the ignition 
temperature, tig(s) is the ignition time, T (K) is the 
temperature, K(m2/s) is the thermal diffusion constant, α 
(1/s) is the combustion time constant, σv(kg/m2) is the 
vegetable surface mass, and σv0 (kg/m2) is the initial 
vegetable surface mass (before the cell combustion). 
Combustion occurs above the threshold temperature Tig; 
above this boundary, the fuel mass decreases exponentially, 
and the quantity of heat generated by the combustion 
reaction per unit fuel mass is constant. 

The model was originally run using two numerical 
methods to discretise the model (finite elements and finite 
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differences) to approximate the previous equations. The 
authors used an approximate algebraic equation. Figure 5(a) 
shows the temperature curve of a burning cell, derived from 
the equations above. 

Although the simulation was efficient, it did not support 
program evolvability. To improve the model, a modification 
of the original model (Santoni and Balbi, 1997)  
used CA with continuous state variables (the cells’ 
temperatures). This CA was simple to define and efficient to 
run, but it did not provide detailed system behaviour, as 
each cell only includes a limited number of states  
(and advanced behaviour in the model would require a 
major reprogramming of the CA). In all cases, the authors 
obtained the best performance by activating only the cells 
neighbouring the front flame. Nevertheless, this model and 
its optimisations were too complex to be used and  
modified by non-computer science specialists. Likewise, the 
performance was not enough for real time simulation. 

Instead, cell-DEVS is well fitted for solving  
these problems, as showed in Wang and Wainer (2014), 
Muzy et al. (2005) and Van Schyndel et al. (2014). This 3D 
cell-DEVS model is organised in two planes: the first one 
represents the fire spreading itself (in which each cell 
calculates its temperature) and the second stores the ignition 
times for the corresponding cells. Figure 5(b) shows a 
simplified diagram of the complete curve used for that 
version of the model (Muzy et al., 2005). The curve is 
divided in four stages: an inactive cell has very low 
temperature and no neighbours with a temperature higher 
than Ta. The unburned cells have low temperature, which is 
calculated as the weighted average of the neighbourhood. 
The burning cells have reached the ignition temperature Tig 
(573K = 300°C), making the fuel burn; the cell’s 
temperature increases until the peak, and when the fuel is 
consumed, it falls back. In this phase, the temperature is 
again the weighted average of the temperatures around it, 

but adding an exponential that describes the temperature 
behaviour. The fourth stage is burned (the cell has 
exhausted its fuel, the temperature gets lower than  
333K = 60°C because the fuel mass is consumed and it 
cannot longer reignite). In this phase (and when the cell is 
inactive) the cell’s temperature does not change (these 
passive cells will respond to any temperature changes in 
their neighbourhood, and they could ignite). 

Figure 6 shows how we can use CD++ to build a  
cell-DEVS version of the fire spreading model presented in 
Muzy et al. (2005). 

We use two planes to model our fire-spread model. The 
plane 0 to store the cell temperatures, and plane 1 stores the 
ignition time needed by the model. Figure 6 starts with the 
cell-DEVS coupled model definition (including the 
neighbourhood definition). Then, the ti rules show how to 
store ignition times: if a cell in plane 0 starts to burn, we 
record the current simulation time in plane 1. To make this 
happen, we include a clause specifying to identify the layer 
in which the current cell is located (cellpos(2) = x). 

The macros show the rules corresponding to the 
temperature calculus: cells can be inactive, unburned, 
burning and burned. The first rules in the figure correspond 
to the phase unburned. An unburned cell’s temperature is 
lower than 573K. If the cell belongs to the plane 0, and its 
temperature at the next time step is greater than the current 
one, the cell will take the value given by the unburned rule. 
The same occurs if the simulation time is smaller than  
20 (transient period) and it is neither burning nor burned. A 
cell starts burning at 573K and its temperature increases for 
a while; then it start decreasing as the fuel mass is 
consumed. When the temperature gets lower than 333K, the 
cell enters the burned phase. The first rule in Figure 6 
applies to unburned cells, whose temperature in the next 
step will be higher than its current one. The second rule 
applies to burning cells. 

Figure 5 (a) Temperature curve (b) Simplified temperature curve (see online version for colours) 

  
(a)       (b) 

Source: From Muzy et al. (2005) 
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Figure 6 Fire spread model specification and model macros 

[ForestFire]    % Cell-DEVS Coupled Model Definition 
dim : (100,100,2)    border : nowrapped                        %Dimension and Borders 
neighbours : (-1,0,0) (0,-1,0) (1,0,0) (0,1,0)(0,0,0)(0,0,-1)(0,0,1)    %Neighbours 
zone : ti { (0,0,1)..(99,99,1) }            % A Special rule, ti, is used in the 2nd plane 
localTransition : FireBehaviour    % Everywhere else, the  
 
[ti] 
     %Postcondition   Delay                   Precondition 
rule : { time/100 }    1      {  cellpos(2)=1 AND (0,0,-1)>=573 AND (0,0,0) = 1.0 } 
     %If the cell below is burning (precondition), store the current time. Wait 1 time unit. 
 
 
[FireBehaviour] 
------------------------------------------------------------------------------------------------- 
% Rule for Unburned Cells 
rule: {#unburned} 1 {(0,0,0)<300 AND (#unburned>(0,0,0) OR time<=20)}  
 
% If the cell is unburned (less than 300 K) and temperature is increasing, compute the first eq. 
% The unburned macro computes the value according to the equations 
 
------------------------------------------------------------------------------------------------- 
% Rule for Unburned Cells 
rule: {#burning} 1 {cellpos(2)=0 AND ( ((0,0,0) > #burning AND (0,0,0)>333) OR (#burning> (0,0,0)  
       AND (0,0,0)>=573) ) } %Burning 
 
% If the cell is burning (less than 300 K) and temperature is increasing or decreasing, c 
% the second eq. The unburned macro computes the value according to the equation 
 
------------------------------------------------------------------------------------------------- 
 
rule : { (0,0,0) } 1 { t }   %Stay Burned or constant 
 
#BeginMacro(unburned)       % Equation used for unburned cells 
(0.98689 * (0,0,0) + 0.0031 * ( (0,-1,0) + (0,1,0) + (1,0,0) + (-1,0,0) ) + 0.213 ) 
#EndMacro 
 
#BeginMacro(burning)     % Equation used for burning cells  
(0.98689*(0,0,0)+.0031*((0,-1,0)+(0,1,0)+(1,0,0)+(-1,0,0))+   
  2.74*exp(-.19*((time+1)*.01-(0,0,1)))+.213) 
#EndMacro 

 

 
The ti rules show how we store the ignition times. The 
condition is if the cell belongs to the plane 1, and the 
corresponding cell in plane 0 begins to burn, the cell will 
take the real time value (simulation time multiplied by the 
time step). 

One of the advantages of using cell-DEVS is that all 
cells in the inactive or burned phases will remain passive, 
and thus the calculations will be automatically confined to 
the fire front. Also, as shown in Wang and Wainer (2014) 
and Van Schyndel et al. (2014), changing the rules that 
model the cell’s behaviour when new scientific results are 
available is simple. When running this model using a linear 
ignition, the prediction of spread rate and the propagation 
were in agreement with the experimental data. Likewise, the 
cell-DEVS execution time was better than a previously 
existing model in terms of CPU and memory usage  
(a 100 × 100 cells simulation could not run). 

The techniques introduced in this section usually 
discretise time (using a discrete event simulator on for 
discrete-time models, which can introduce performance 
issues). Many of the solutions mix the simulation artefacts 
with the model (like dynamic structure algorithms to 
improve memory usage and performance). Likewise, the 
models are sometimes complex (trying to identify the front 
flames), and evolvability can be compromised (mostly 

experts in DEVS and the particular tools can modify these 
models with ease). In the next sections, we will show how 
these procedures can be automated by the simulation 
engine, hiding the optimisations from the users, and 
improving performance through automated detection of 
activity. 

3 Experiences with dynamic quantisation 

As discussed in the previous sections, when using quantised 
DEVS, a state value will be only informed to its neighbours 
when it crosses the quantum threshold. This operation 
potentially incurs into error while improving performance 
substantially. The inclusion of hysteresis provides stability, 
convergence and bounded errors. Thus, we propose 
combining these methods with cell-DEVS and dynamic 
quantisation. One of the problems with these techniques is 
the choice of the quantum size: an active cell can appear as 
quiescent if a quantum covers the activity area (resulting in 
a larger error) or produce many oscillations if the quantum 
is too small. Figure 7 shows a case where the value 
computed by the cell at time t1 does not reach the threshold 
(i + 1)D. 
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Figure 7 A cell missing activity 

 

Hence, as discussed in Figure 4, when the quantiser 
compares this value with the last one computed (iD), the 
cell is considered quiescent. Unless a neighbour reactivates 
it, the cell will passivate and the simulation might not 
evolve. Instead, if the quantum size is reduced, activity will 
be detected and a smaller error will be obtained. 
Conversely, if we increase the quantum size in very active 
cells, the execution times can be improved (introducing 
some error). 

In order to automate these activities, we proposed two 
different heuristics to adjust the quantum size, based on the 
signal-to-noise-ratio (SNR). Let q be the base quantum, r 
the adjustment ratio for the dynamic quantum, and d(t)  
the quantum value used in time t. If . ,  ( )v i D v τ s′= =   
(the new computed value), and q(0) = q, then for  

( )
( )

,  ,  
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• low SNR heuristics: 
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The idea of the high SNR strategy is as follows: if the result 
of updating the cell’s value is below the boundary (like in 
Figure 7), the quantum size is reduced. Otherwise, the 
quantum size is increased. When the level of activity in the 
cell is low, we increase its precision, and the activity on the 
cell will be now detected, reducing the quantum size allows 
one to detect small levels of activity). If a cell becomes very 
active and it crosses many boundaries quickly, we increase 
the quantum size. This technique assumes that in regions of 
high activity, the function does not change often, and we 
can speed up the computation; this will increase the 
simulation speed with small error added. 

The low SNR strategy, instead, focuses on signals with 
high SNR, as the one in Figure 8. The method increases the 
quantum size every time a threshold is crossed. By doing 
that, we can filter noise and extract the relevant events as 
seen in Figure 8. Otherwise, the quantum size reduces. This 
strategy will reduce the number of messages involved in the 
simulation at a cost in higher error. Figure 8 shows a noisy 
signal. Initially, we use a small quantum size (five regions 
in total), and the signal is represented by a piecewise 

constant trajectory with five levels. With this quantum size, 
and as we cross the boundaries at every step, the quantum 
size is increased. In the centre of the figure, we only have 
one region for the whole spectrum of the signal. When no 
change is detected during a given time, the quantum size is 
reduced again, as we can see at the end of the figure, where 
there are five regions and a smaller quantum again. 

Figure 8 Low SNR signal and dynamic quantisation 

 

We conducted varied experiments using both strategies in 
the context of different applications. One of them is  
a cell-DEVS implementation of the action potential (AP) in 
the cells of human atria. This was based on a model 
originally defined by Hodgkin and Huxley (1952), who 
investigated the behaviour of the heart muscle membrane, 
and presented the detailed behaviour of the inter-membrane 
AP. Whereas solving the Hodgkin-Huxley equations  
using numerical methods is feasible for one cell, the 
realistic reproduction of the heart tissue (consisting of 
millions of cells) is unfeasible. Consequently, different 
authors tried to introduce simpler rules, using CA instead  
of the Hodgkin-Huxley equations. This has a cost in  
precision (Bonaventura et al., 2013), as CA use a discrete 
time base, and because introducing modifications to the 
basic behaviour of individual cells results in complex code 
reorganisation (for instance, arrhythmias, modelled by a 
different AP function for isolated groups of cells, can be 
hard to code). 

Using cell-DEVS with dynamic quantisation, one can 
define detailed behaviour for each cell using easy to modify 
rules and well defined functions for timing, which allows 
one to introduce new arguments and rules with ease. This 
method also discretises the model automatically, as the 
dynamic quantiser detects activity in the model, improving 
its precision and speed. Figure 9 illustrates this with two 
examples using different quantum sizes. 

Figure 9 shows the execution of the AP function  
(the X axis represents one AP that takes 50 ms; the Y axis 
represents the current in the heart tissue membrane, which 
ranges from –20 mV to 5 mV). The figure shows how  
Q-DEVS automatically discretises the model while keeping 
the original rules used to generate the behaviour unchanged. 
We do not need to define artificially the state values for the 
regions of interest, as done for CA (in which the excitation, 
relaxation and refractory periods are usually identified, 
making the model very efficient to compute, but very 
imprecise when one needs to study the individual cell 
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behaviour in detail). The AP rules in the figure are 
evaluated only if the cell is resting and a positive  
voltage is detected in the cell’s neighbourhood. This  
activity will trigger the update of the cell state using the 
Hodgkin-Huxley equations. 

Similarly, Figure 10 shows the results of a watershed 
formation model presented in Moon et al. (1996). In this 
case, the rain is absorbed first by the vegetation in the 
surface of the terrain, and the rest (effective quantity of 
water) is accumulated at the surface. Depending on the 
topology of the land, the cells can also receive/send, water 
from/to the neighbours. Part of the water received is lost due 

to the filtration over the land and stones. The accumulated 
water depends on the quantity of effective rainwater, and 
the quantity of water from the neighbour cells minus the 
water filtered by the stones and soil. Figure 10(a) shows the 
initial state, which represents the slope of the terrain before 
raining (each cell occupies 1 km2). The remaining figures 
show the execution results after intense rain (0.0022 mm/s) 
after ten minutes of simulated time, showing the changes in 
the surface of (and the accumulation of water) for different 
simulation heuristics and quanta (the figure represents the 
surface of the terrain measured in metres). 

 

Figure 9 Sample execution results of the heart tissue model, (a) quantum = 0 (b) quantum = 20 (see online version for colours) 

  
(a)      (b) 

Figure 10 Watershed simulation results, (a) initial watershed state (b) quantum = 0 (c) quantum standard 3.5 (d) dynamic Q-DEVS high 
SNR strategy 1.0 (see online version for colours) 
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Figure 11 Heart tissue model, cumulative error number obtained; number of messages interchanged (see online version for colours) 

 

 

 
In Figure 11, we show some experimental results obtained 
using the automated dynamic quantisation. We analyse two 
main metrics: the execution time (represented by the 
number of messages involved in the simulation), and the 
amount of error introduced by each strategy. We executed a 
large number of tests in different categories, including  
non-quantised cell-DEVS, QSS and Q-DEVS, dynamic 
quantisation with high SNR and low SNR strategies. 
Different combinations of the previous categories with 
different quantum sizes and different update ratios were 
used (we discuss representative results of the tests; more 
results can be found in Wainer, 2004). Figure 11 presents 
the cumulative error and the number of messages for the 
heart tissue model. 

The error was obtained by comparing the values in 
quantised simulations against those in non-quantised cases. 
The cumulative error at time t(Et) was computed as 

( )( )
 0,  1..

, , ,  –   ,
t t δ i n

t i t i t i tE s q s n
= < =

=∑ ∑  

with n the total number of cells, δ the programmed 
simulation time end, qi,t the value of the quantised value of 

cell i at time t, and si,t the value of cell i at time t. In this 
case, the results obtained with Q-DEVS and QSS were 
similar, as QSS works better with noisy signals (it applies 
hysteresis when there are changes in direction and, as seen 
in Figure 9, there is only one change in direction on each 
activation of this model). The lowest error was obtained 
with the high SNR strategy, using an update ratio of 0.9. 
When we analyse the heart tissue function, we can see it has 
high SNR. There is an initial spike in the function, which 
increases the quantum every time the boundary is crossed 
(thus reducing the number of messages). Simultaneously, 
the error is constrained (except for very large quantum 
sizes). As the cell is updated every 100 ms, the quantum 
reduces very quickly, and it increases quickly again, 
keeping the error limited. Likewise, all the high SNR results 
were better than the low SNR strategy and Q-DEVS (the 
larger the ratio, the better the result). This result was 
expected for this kind of model, which is a function with 
high SNR. Instead, the low SNR strategy gets a very large 
error (worse when the ratio is higher): on each update 
during the transient period, the quantum size increases, 
generating a large amount of error (and on the linear 
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section, the quantum is reduced, gaining little precision at a 
high cost for the simulation). In this case, the strategy 
assumes a high SNR (which is not the case for this 
function), which gets higher precision every time a 
threshold is crossed. Here, every time the cell is updated, 
the boundary is not crossed, thus, the quantum size 
increases (highly reducing the number of messages but 
increasing the error, which diverges for large quanta). A 
higher update ratio makes things worse for the low SNR 
strategy because it is aggressively searching for noise  
(and there is none in this function). 

Figure 12 presents the results of the watershed model 
using the land topology presented in Figure 10. We could 
observe a similar pattern than the one obtained for the heart 
tissue model. Again, there was no difference between Q-
DEVS and QSS: each cell uses a linearly increasing 
function. The lowest error was obtained with the dynamic 
quantum with high SNR (ratio 0.9), and all the results 
obtained with the high SNR strategy were better than those 

obtained with low SNR and standard Q-DEVS, as the water 
accumulation function has even a lower SNR than the heart 
tissue AP function. Although the order of the different 
heuristics is repeated, in this case the total error is smaller 
than in the heart tissue case, because the cell’s function 
increases slowly, and in a linear fashion. 

The figure shows a particular phenomenon: using  
Q-DEVS with q = 0.05 provides better results than the 
dynamic strategies. Studying the behaviour of each cell, we 
could see that they increase linearly approximately  
0.07 units on each update. Consequently, by increasing the 
quantum size, we obtain a value larger than 0.07, which 
reduces again in the next simulation step. The quantum 
changes oscillate around the boundary, resulting in an 
increase in the total number of messages. This number 
increases more when the update ratio is higher, as the 
quantum varies a larger rate at every step. This does not 
occur when the quantum size is fixed. 

Figure 12 Q-DEVS watershed model output messages; watershed model cumulative error (see online version for colours) 
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Using a low update ratio improves the number of messages 
involved while increasing the error. By paying a small cost 
in the extra execution overhead, we were able to reduce the 
error involved (up to 75%). The low SNR reduces the 
number of messages involved in a higher rate than high 
SNR, but incurring in a higher amount of error. If we 
consider, for instance, q = 1 with high SNR and ratio 0.9, 
the error introduced is minimum and the number of 
messages is highly reduced. If we consider q = 3.5, the error 
obtained with high SNR strategy is better than the 
remaining techniques with a larger quantum, while the 
number of messages involved is comparable. 

In every case, the lowest error was obtained with the 
high SNR strategy. Updating the dynamic quantum size 
with higher/lower ratios improved the simulation results 
even more. Simultaneously, the number of messages was 
reduced significantly. The dynamic quantisation is adapted 
to improve the error involved; while making the overall 
execution time highly reduced. In other experiments, we 
could also see that the introduction of hysteresis permits to 
obtain a more controlled behaviour, even for applications 
with cells executing with a nonlinear pattern. 

4 Quantising the fire spread cell-DEVS model 

The level of activity is usually measured by seeing how 
much the cell changes. In this section, we discuss the  
cell-DEVS quantisation techniques for fire spreading 
modelling. Figure 13 shows an example for a 20 × 20 
propagation domain during 20 s using different quantum 
sizes. Figure 13(a) shows a reduction in the message 
number and the execution time, and the error obtained for 
both cases, which is similar to the results in previous 
sections. Figure 13(b) shows different ratios applied to  
q = 1: the larger the ratio is, the lower the error (and the 
longer the calculation time). For a ratio of 0.1%, the error 
decreases from 21% to 9.2%, adding a small execution time 
overhead (from 5:50 min to 6:33 min). The dynamic 
quantisation allowed us to optimise the quantum size of 
each cell according to cell’s phase. Hence, the error and the 
execution time have been reduced. Nevertheless, error still 
does not converge for high quanta. 

As discussed in Figure 7, one of the main problems for 
this model (and many other similar ones) is that time 
advances from time t to t + h, and quantisation can only 
improve the results up to a certain extent. We could also see 
that if the quantum is too large and the energy brought by 
the neighbouring cells is not enough, the temperature of the 
cell cannot reach the boundary, and it remains between two 
states (hence, the cell is considered inactive). These issues 
will be discussed in the following sections, where we 
propose new methods for solving this problem. 

4.1 Quantised function definition 

As discussed in Section 3, each cell will send outputs to its 
neighbours if its temperature has exceeded the next 
boundary. As previously shown in Figure 7, when the 

quantiser compares the new computed value with the last 
one computed, iD, the cell is considered quiescent, and 
unless a neighbour reactivates, the cell will passivate 
forever. This prevents the model from evolving, as all cells 
could be considered passive and the simulation will finish. 

Figure 13 Message and error comparison; error and execution 
time comparison for q = 1 (see online version  
for colours) 

 

 

The main reason for this problem is that most of these 
models use a discrete timestep whose results are then 
quantised. The reason for this is that most experimental 
studies are currently carried out using a time-based 
approach; most equations are derived as a function of time. 
Instead, we need to calculate time based on temperature, 
rather than temperature as a function of time, defining the 
quantised functions as a function of the quantum 
boundaries. Figure 14 shows (an approximation to) the 
inverse of the temperature curve for a typical cell. Given 
such a function f(T), we can calculate the amount of time it 
will take to reach the next quantum level as the difference 
f(T2) – f(T1). This saves unnecessary calculations, as cells 
will only become active when a significant change in 
temperature occurs. 
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Figure 14 Inverted temperature function, (a) increasing (b) decreasing (see online version for colours) 

  
(a)      (b) 

 
As seen in Figure 5, the temperature function fails the 
horizontal line test, and therefore is not directly invertible. 
Hence, we divided it into increasing and decreasing 
components, giving us two invertible functions. Figure 
14(a) shows a fitted function for the increasing temperature 
portion of the curve that uses a sum of two exponential 
functions: 

0.0005187* 0.01423*( ) 11.56* 784.7*T Tf T e e−= −  (2) 

where T is the temperature in K. This can be used for cells 
in the burning up phase. Similarly, the decreasing portion 
(or cooling phase) is fit with the linear function: 

( ) 0.052*f T T=  (3) 

(we also found higher order functions that fit the functions 
with greater accuracy if needed). Using these functions, 
most of the problems discussed in previous sections are not 
an issue anymore: these functions can be used for updating 
the cell’s values directly, and they will not compute 
intermediate values (and will only activate the cell after the 
boundary has been reached). The function gives us the time 
corresponding to a specific temperature, thus we can apply 
dead reckoning techniques (discussed in the next section) 
and use the function to calculate what the time will be when 
the cell’s temperature crosses the next quantum. By doing 
this, the cells remain inactive until they reach the next 
quantum boundary. At that time, the cell will calculate the 
new state and the next time at which they will cross the next 
quantum boundary (and then it passivates until that time 
arrives). 

4.2 Dead reckoning 

Although using dynamic Q-DEVS is straightforward, 
combining dynamic quantisation with the boundary 
detection (as discussed in the previous section) and dead 

reckoning can improve the results considerably. To do this, 
one needs to track the current slope of the function and 
extrapolate from there to predict the next change. Accurate 
calculations of the current temperature could be made after 
either every jump (or a state variable could be kept to limit 
it to every N jumps, improving the performance further). 
This saves execution time, since the cells only activate on 
the significant event of crossing a threshold of interest. 
Collecting experimental data using this method is also more 
efficient: instead of sampling every cell every 1 ms (or 
similar sample time), one only needs to record the times of 
boundary crossings. This would potentially save data 
storage and make better use of network bandwidth in the 
testbed. This sort of technique has already been applied to 
distributed simulation as shown in Lin (1995), Cai et al. 
(1999) and Lin and Schab (1994), and in the case of cell-
DEVS, it can be implemented at the delay function, see 
Figure 15. 

This cell-DEVS model uses two planes: the 
temperatures are computed on the first plane (which is 
detected using the cellpos() function, which returns in which 
plane is the current cell), and the ignition times are in the 
second plane. The cells in the Burning phase have not yet 
reached their peak temperature. These cells will calculate 
the delay after which they should increment their 
temperature [according to the burning function defined in 
equation (3) in Section 4.1]. This value now depends on the 
quantum size q. As we can see, the cell value is transmitted 
only after the boundary is reached, and then the cell 
passivates until the next time arrives. Cells in the cooling 
phase are still burning, but have reached their peak 
temperature, which is falling from here on in. These cells 
will calculate (according to the burning down function) the 
delay after which they should decrement their temperature, 
and then they become passive for that amount of time. 

 
 



32 G.A. Wainer  

Figure 15 Dead-reckoning implementation 
 
[FireBehaviour] 
------------------------------------------------------------------------------------------------- 
% Rule for Unburned Cells 
rule : {  
  % Rule Postcondition: compute the cell’s value: will now become a Burning cell 

#macro(unburned) + #macro(q) }    
 
  % Delay for the Cell’s output: computing the speed rate according to the formulas 
       {  round (((11.56 * exp(0.0005187*((0,0,0)+#macro(q))) - 784.7  
         *exp(-0.01423 *((0,0,0)+#macro(q))) ) - (11.56* exp(0.0005187*(0,0,0) ) - 784.7  
         * exp(-0.01423 * (0,0,0) ) ) ) * 100)}  
 
  % Rule Precondition: check that it is not a burning or burned cell and there is fire 
        { cellpos(2)=0 AND #macro(unburned)>(0,0,0) AND (0,0,0)<573 AND (0,0,0)!=209 }  
       
------------------------------------------------------------------------------------------------- 
% Rule for Burning Cells 
rule : {  
  % Rule Postcondition: compute the cell’s value: compute the next burning value 

#macro(burning) + #macro(q) }  
 
% Delay: computing speed rate according to formulas for burning cells 

    {round (((11.56*exp(0.0005187*((0,0,0)+#macro(q))) - 784.7* 
      exp(-0.01423*((0,0,0)+#macro(q))) ) - (11.56* exp( 0.0005187*(0,0,0) ) - 784.7 *  
        exp(-0.01423 * (0,0,0) ) ) ) * 100)}  

  
  % Rule Precondition: check that temperature is increasing; or decreasing and not burned

{ cellpos(2)=0 AND ( ((0,0,0)>#macro(burning) AND (0,0,0)>333)  
   OR (#macro(burning)>(0,0,0) AND (0,0,0)>=573) )AND (0,0,0) != 209 }  

 
------------------------------------------------------------------------------------------------- 
% Rule for Burned Celles: make the cell have a fixed value of 209 degrees as postcondition 
rule : {209} 100 { cellpos(2)=0 AND (0,0,0)>#macro(burning) AND (0,0,0)<=333 AND (0,0,0)!=209 } 
 
------------------------------------------------------------------------------------------------- 
% Second plane (cellpos(2) = 1): stores the time when the cell below starts burning.  
 
rule : { time * 0.01 } 1 { cellpos(2) = 1 AND (0,0,-1) >= 573 AND (0,0,0) = 1.0 }  

 

Figure 16 (a) Execution times (b) Number of messages passed (see online version for colours) 
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We ran the fire spread simulation in CD++ using dead 
reckoning and the original model, in order to compare the 
results of the two. The initial values used were similar to 
that in the provided model, representing a line ignition 
scenario. As seen in Figure 16, Q-DEVS and a combination 
with dead-reckoning (the third column) reduced the 
messaging between cells dramatically. The number of 
messages in the simulation was reduced by more than even 
when almost all cells in the model are active (gains were 
even larger when only a few cells were initially activated). 

As we had noted earlier, reducing the execution time of 
the simulation could result in reducing the accuracy of the 
model and generating a large error. As we can see in  
Figure 17, the results we obtained using our model are 
similar to the ones obtained with the original model, which 
matches the experimental data. The cumulative average 
weighted error for the simulations was below 2%, following 
the trend presented in previous sections. 
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Figure 17 Execution results at 0, 300 and 1,000 time units (see online version for colours) 

   

Table 1 Fire1 test results (s) 

Size 1 2 4 6 8 10 12 14 

100 × 100 34.03 30.45 29.35 30.74 33.24 36.57 39.63 45.48 

200 × 200 565.44 437.88 379.47 373.07 381.11 393.54 405.42 436.87 

300 × 300 2,872.10 2,234.75 1,890.38 1,812.64 1,773.66 1,777.89 1,765.33 1,865.92 

500 × 500 22,537.10 16,476.80 14,209.30 13,377.10 13,031.00 12,891.80 12,793.90 12,570.60 

 
4.3 Parallel processing 

An interesting advantage of the methods presented here is 
that, being applied to the simulation engines, the original 
models do not need to change. Based on these models, we 
can achieve higher performance applying parallel discrete 
event simulation (PDES) techniques. We built different 
parallel simulation environments, namely, the conservative 
CD++ (CCD++) and different Optimistic versions (Jafer 
and Wainer, 2010a, 2010b; Liu and Wainer, 2010b). In all 
of them, the cell-DEVS model definitions remain 
unchanged. Therefore, we can apply the same models 
discussed throughout this paper without any changes to the 
original specifications, achieving large speedups in the 
execution results. In this section, we show some results of 
two of the forest fire propagation discussed in earlier 
sections, based on Rothermel’s definitions. The models, 
which will be called Fire1 and Fire2, differ in how the 
spread rates are calculated. Fire1 uses a predetermined rate 
at reduced runtime computation cost, while Fire2 invokes 
the FireLib library to calculate spread rates dynamically 
based on a set of parameters such as fuel type, moisture, 
wind direction and speed. For all the models showed here, 
we used a partition strategy that evenly divides the cell 
space into horizontal rectangles. 

Table 1 gives the resulting total execution time for Fire1 
of varied sizes on different numbers of nodes. The best 
execution times in each series are shown in bold. The  
model was tested using cell spaces of 100 × 100, 200 × 200, 
300 × 300, and 500 × 500, on 1 to 26 nodes. As we can see, 
the conservative parallel DEVS simulator reduces the 
execution time as the number of nodes increases until it 
reaches the best execution time (the value in bold). We are 
able to execute very large models (up to 250,000 cells). The 
smallest execution time is achieved at 4, 6, 12, and 14 nodes 
respectively and after that, the execution increases when 

more nodes are engaged (due to the simulator’s overhead). 
Also, when the number of nodes gets closer to the boundary 
value, the difference among execution times is not 
meaningful (for example, for the 200 × 200 model, the 
execution time decreases by only 1.7% from four to six 
nodes, and for 500 × 500 cells it only decreases by 1.8% 
from 12 to 14 nodes). This is because when a model, 
especially a small one, is partitioned onto more and  
more nodes, the overhead involved in inter-processor 
communication and the increasing number of support 
messages eventually degrades the performance. We need to 
consider the tradeoffs between the benefits of higher degree 
of parallelism and the associated overhead needs when 
choosing different partitioning strategies. 

Figure 18 shows the results obtained when applying the 
simulation engine in the Cell-BE processor for the Fire2 
model (Liu et al., 2010). This model uses a 1,024 × 1,024 
cell space (over one million cells) to simulate a wildfire 
scenario based on predetermined spread rates for 50 virtual 
hours. The model is evaluated sequentially by the active 
cells at each virtual time to determine their future states. 
The figure shows the overall simulation time obtained on 
the Cell-BE processor (the X axis shows the simulation 
results obtained when the model was executed in multiple 
partitions in different cores and different number of cores), 
and on an Intel E6400. On the Cell-BE, the simulation time 
was reduced from over three hours (one power processing 
element; PPE-optimised, which runs in only one power PC 
CPU) to just 20 minutes with a kernel split on 16 synergistic 
processing element (SPE). Comparing to the baseline and 
optimised CD++, the simulation achieved speedups up to 
134.34 and 9.74 on CBE and up to 41.23 and 1.92 on the 
E6400 respectively, running faster than real-time. 
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Figure 18 Optimistic simulation on parallel Cell-BE architecture (see online version for colours) 

 

Figure 19 Comparing QSS-based and time-based modelica simulators: trajectories and relative error (see online version for colours) 
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4.3 Higher order quantisers 

One of the problems found in the fire models presented in 
previous sections is derived from the fact that the quantisers 
do not provide good results for the local maxima/minima as 
well as values close to zero. For instance, the following 
figures show the current trajectories (input/output flow) and 
the error for an ideal transformer plotted based on the 
results of two modelica compilers: Dymola (Dynasim 
Laboratories, 2004) and M/CD++ (Wainer and D’Abreu, 
2014). Dymola is a commercial toolkit for complex physical 
systems M&S with full support of the Modelica language. 
M/CD++ is an open-source Modelica compiler running on 
CD++ that uses a quantised DEVS model to approximate 
the functions, while Dymola uses an advanced solver based 
on the DASSL algorithm. 

On the examples in Figure 19, we can see that the 
approximate solution based on QSS (which uses first order 
integration methods) has a high error around zero. A higher 
relative error was obtained for values near to zero on the 
trajectory. The main reason for this is that using a fixed 
quantum size (as provided by the quantisation function) 
over the state trajectory can increase the relative error for 
smaller values. Likewise, a first order approximation 
requires a large number of steps to obtain the required 
accuracy (Kofman et al., 2011). 

In order to deal with these problems, we propose to use 
higher order methods to quantise each cell (which preserve 
the second, third derivatives, etc.). This approximation gives 
a piecewise linear output trajectory, and one can transmit 
the slope change coefficients when they differ from the 

previous one in more than the quantum size Δq. Similarly, 
higher order methods can be used. It has been proven that 
these methods are stable and converge, and they can be 
represented as cell-DEVS models. In that case, the model 
will use as many input/output ports as the number of 
coefficients used by the approximation functions. Then, the 
cell will transmit the coefficients (one of them on each 
input/output port), and this is done only when the 
coefficients differ from each other by more than the 
quantum size Δq. 

Using a higher order approximation requires a smaller 
number of activations and we need a more precise 
approximation (which also takes longer to compute). With 
higher order methods, we transmit more messages on each 
activation (because now each cell needs to use one port per 
coefficient) but the number of activations is much lower 
(Kofman et al., 2011). The lower order method can be 
computed much faster. Using higher order approximations 
reduces the error around zero and on local maxima/minima, 
at a cost of overhead in computing the higher order 
function. Therefore, in order to improve these results 
further, we also propose using an adaptive quantisation 
function on each cell, which will make the quantum vary 
according to the trajectory evolution, adapting the two 
heuristics proposed in Section 3 (low and high SNR). The 
idea is that, instead of adjusting the quantum size, we switch 
between the different orders methods according to the 
precision needed. The goal is to apply the two SNR 
strategies and switch between one method and the other 
dynamically according to the level of noise in the cell. In 
this case, the dynamic quantiser will be in charge of 
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changing between one method and the other according to 
the level of noise detected: if the number of activations is 
high, we can switch to a higher order method. 

4.4 Input/output activity tracking 

Another issue with earlier versions of the models introduced 
in Sections 2 to 4, is that all of them use the model’s state 
for activity tracking. Nevertheless, as discussed in Wainer 
and Zeigler (2000) the level of activity depends not only on 
the state of the particular cell, but also on the level of 
activity of the neighbourhood. Therefore, we propose 
analysing the level of activity as the number of external 
inputs. From the point of view of cell-DEVS, a high level of 
internal events can be ignored: a cell with high internal 
activity will produce state changes that will be transmitted 
to the neighbours. Those changes will be detected by the 
neighbours and this will increase the overall local activity. 
If the activity level remains high, the neighbours will react 
and will influence the original cell again. If that does not 
happen, and these changes are ignored by the neighbouring 
cells, that means that this is not a relevant event, and the 
area is, for all purposes, inactive. Likewise, a very active 
cell that only includes internal events and does not 
communicate them to the neighbouring cells (for instance, 
because we decided to use a quantum size much larger than 
the values of internal events occurring on the cell). This is 
equivalent to have a non-active cell (i.e., the numerous 
internal events are filtered by the quantiser; therefore, they 
are not of interest and should not be simulated). 

If this filtering is not done on purpose, this creates a 
problem like the one discussed in Figure 7: the cells change 
internally from time t to t + h; but the change is small 
compared to the quantum, the cell becomes inactive, and 
this could result in the whole simulation to stop. In  
Muzy et al. (2005), the problem was solved by introducing a 
new plane parallel to the others, which was used to keep the 

model running. Figure 20 shows a different method to solve 
this problem. 

This version is still divided in four phases as discussed 
in Section 2. In this case, the first rule applies to unburned 
cells, whose temperature in the next step will be higher than 
its current one. The second rule is based on the same 
principles, but it applies to burning cells. The third rule is 
used when the cells start burning to modify the temperature 
and the ignition time. The fourth rule updates the ignition 
time and the temperature of burning cells when their 
temperature is decreasing. The fifth rule sets the burned flag 
(temperature equals 209K) when a burning cell crosses 
down the 333K threshold. In this case, the temperature temp 
is stored as a cell’s input/output port and the ignition time ti 
in a state variable (temp is passed to the neighbour cells, 
while ti value is only used internally to the cell). Finally, if 
none of the rules applies, we execute the last rule, which 
keeps the cell active. 

Similarly, when we analyse the original quantiser shown 
in Figure 4, this organisation causes problems: the 
computed value is quantised, and if the result is below the 
boundary, the cell is considered quiescent and it passivates. 
Nevertheless, this is not the case (for instance, in the model 
above: if we use a quantum size of 200, the cell will 
passivate quickly and the simulation will end. The cells are 
still active internally). To deal with these issues, we 
changed the cell organisation and quantiser to be as in 
Figure 21. 

Summarising this new cell organisation the previous 
discussions, a cell will first compute the next state for the 
cell using function τ. If the new value obtained is the same 
than the previous for the cell (i.e., s = s’), then the cell 
passivate. Otherwise, the next state change is computed, 
using dead reckoning for computation of the next boundary 
using the delay function d. After the delay is consumed, the 
delayed value is quantised by the quantiser q, and if the 
threshold is passed, the value is transmitted. 

Figure 20 Multiple variables and ports: keeping the model running 

rule : { ~temp := #macro(unburned); } 1 { (0,0)~temp!=209 AND (0,0)~temp<573  
 AND #macro(unburned) > (0,0)~temp  }    %Unburned 
 
rule : { ~temp := #macro(burning); } 1 { (0,0)~temp>333 AND ( (0,0)~temp<573  
 OR  (0,0)~ti!=1.0 ) AND (0,0)~temp > #macro(burning) } 
rule : { #macro(burning) } 1 { (0,0)> 333 AND ( (0,0)< 573 OR $ti != 1.0) AND 
          (0,0)>#macro(burning) } %Burning 
 
rule : { #macro(burning) } { $ti := if($ti = 1.0, time/100, $ti); } 1 
         { (0,0)>=573 AND #macro(burning)>=(0,0) } 
rule : { #macro(burning) } { $ti := time / 100; } 1 
          { $ti=1.0 AND (0,0)>=573 AND #macro(burning)<(0,0) }  % ti 
 
rule : { ~temp := 209; } 100 { (0,0)~temp > #macro(burning) AND 
         (0,0)~temp <= 333 AND (0,0)~temp != 209 }  %Burned 
 
rule : { (0,0) } {~t := time+1 } { t }  % Otherwise, keep the model running 
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Figure 21 New quantised atomic cell 

 

In addition, the idea is to compute the level of activity at the 
cell’s inputs N, and we can apply our heuristics for adjusting 
the quantum size depending on this level of activity. 

4.5 Quantum size adjustment 

One of the main problems with dynamic quantisation is how 
to choose the quantum size, and how to limit the changes in 
order to obtain good execution results. As discussed in 
Section 4.5, the idea is to compute the level of activity at the 
cell’s inputs N, and to apply our heuristics for adjusting the 
quantum size depending on this level of activity. 
Nevertheless, we need to control the quantum size: although 
a limit for the relation between message number and error 
was found in Zeigler (1998), which is depicted in  
Figure 22 using dynamic quantisation methods (which 
change the quantum size dynamically) could have problems. 
In order to do this, we propose a method based on the 
working set algorithms used traditionally for virtual 
memory management in demand paging operating systems. 
The idea of these algorithms is to use information provided 
implicitly by the running process to adjust the virtual 
memory size. In our adaptation, we use the quantum as a 
measure: a large quantum size means that the number of 
messages (and CPU time) is reduced, but the error 
increases; a small quantum size implies a small error (and a 
cost in speed). Then, when we have a large number of 
messages, most of the time the CPU will be busy computing 
results with a high precision that is probably not needed. 

Figure 22 Message frequency model (see online version  
for colours) 
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Considering these facts, we propose to control the quantum 
size indirectly, using a method that gave good results when 
applied to model virtual memory systems. This method, 
called the “page fault frequency model” (Wulf, 1969) is an 
algorithm that allows avoiding thrashing with a very low 
level of overhead. Our technique, called the ‘message 
frequency model’, applies the same strategy and it studies 
the number of messages in a cell, using this information to 
constrain the modification of the quantum sizes. As seen in 
Figure 22, when the level of activity increases, so it does  
the number of messages involved in the simulation 
(exponentially). Instead, if the number of messages is low, 
that means that the degree of activity is low (and we have a 
very large error). In Figure 22, this means that we could end 
outside the shaded area, in which the number of messages is 
small and the error very high, or the error is limited and the 
overhead high. The goal of this method is to remain in the 
shaded area. To do that, we count the number of messages 
in a period, and choose a minimum and maximum threshold 
(defined by the horizontal lines in the figure), which allows 
maintaining the level of activity high, while reducing the 
simulation overhead. If the number of messages is below 
the lower boundary for the cell, this means that the amount 
of error is very high. Therefore, at that point, we must 
reduce the quantum size. Likewise, if the number of 
messages is too high, this is a signal of high overhead, and 
we increase the quantum size. 

Deciding the quantum size based on this algorithm only 
introduces a minimum extra overhead (we just need a timer 
and a message counter, and to compare these values in order 
to decide if the quantum size should change and how). 

A different method for adjusting the dynamic quantum 
efficiently is to limit the number of quantum sizes to a 
reduced number of categories, only allowing changing 
between them, as in Figure 23. 

Figure 23 Multiple quantum categories 

 q = 0.1

q = 0.5

q = 1

q = 10  

The idea is to have a few limited quantum categories, 
starting with a small size (in our example, 0.1). If the 
activity is high (i.e., we surpass the threshold), we switch to 
the larger quantum category. If activity is low, we reduce 
quantum to a smaller category. In this way, the model will 
adjust to the right quantum size dynamically: if we have a 
very active model, it will change to the larger quantum, 
until it is large enough for the current level of activity. At 
that point, the quantum size will not change until there is a 
change in the activity level. The idea is that, when the 
threshold is not passed, we stay at the current quantum 
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level. In order to avoid the problems of Figure 7, the 
simulator for each model will change to a lower category 
after a given amount of time, after which the quantum is 
adjusted to the lower category. A more aggressive policy is 
to move directly to the smallest quantum category, giving 
the model a second chance to run with high precision. 

5 Conclusions 

We have introduced different methods based on DEVS and 
cell-DEVS, which can be used to speed up the simulation 
and simplify the modelling of fire spreading and other 
environmental spatial models. The methods use a 
combination of quantised DEVS, dead reckoning, and 
dynamic quantum adjustment according to the level of 
activity. We have showed how these methods can be used to 
track the activity in the model. In the long term we want to 
provide guidelines to reduce the intervention by the 
modeller to a minimum, based on heuristics selection of the 
different techniques. 

The method also allows the modellers to use a simple 
set of equations. This provides evolvability, and models can 
be modified by non-experts in the field (as they learn about 
the phenomenon under study). We also showed a different 
method for finding the equations to determine the time the 
cell will pass a boundary (instead of computing the values 
of the equations as a function of time). This value, 
determined by the quantum of a Q-DEVS model, should be 
used as a function of the current temperature. 

The techniques presented here were able to improve 
performance, and in the case of combining them with 
parallel processing, we could simulate a 50-hour wildfire in 
approximately 20 minutes, giving the chance to conduct 
multiple studies in real time for fire contention. 
Quantisation was implemented by calculating the time  
steps between temperatures, instead of the temperatures at 
time steps. This achieved the goal of keeping all cells 
inactive until a significant event takes place. Another 
modification was to keep cells in the unburned state passive 
until they are seen to reach the ignition temperature. This 
increased performance, but had problems with accuracy, 
and required some prior knowledge of how the fire would 
develop to obtain good equations. We found that the general 
direction and speed of fire spread was maintained by our 
model, although some finer details such as peak 
temperatures and temperatures of cells at the fire front lost 
accuracy. 

We are currently experimenting with new extensions 
and with the implementation of some of the techniques 
introduced in this article. We are interested in providing 
generic guidelines, and define a systematic method in order 
to help the modeller to decide which of the different 
strategies is best suited for a particular problem, based on 
the characteristics of the problem and the objectives to 
achieve. 
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