
Int. J. Simulation and Process Modelling, Vol. 10, No. 1, 2015 19

Copyright © 2015 Inderscience Enterprises Ltd.

The cell-DEVS formalism as a method for activity
tracking in spatial modelling and simulation

Gabriel A. Wainer
Department of Systems and Computer Engineering,
Carleton University,
4456 Mackenzie Building,
1125 Colonel By Drive, Ottawa,
ON, K1S 5B6, Canada
Email: gwainer@sce.carleton.ca

Abstract: The spreading of wildfires in forests is a complex natural phenomenon that depends on
many different variables (such as the fuel, the geography of the area, the weather, etc.). We
discuss different methods based on DEVS and cell-DEVS, which can be used to speed up the
simulation and simplify the modelling of this kind of spatial system. We propose using a
combination of quantised DEVS and dead reckoning to vary the length of the time steps taken by
each cell. We also discuss different methods to adjust the computation method dynamically
according to the level of activity, varying the length of the time taken by each cell. We show how
these methods can be used to track the level of activity in the model automatically, without
intervention by the modeller, and how this can improve the simulation performance for fire
spreading and other environmental models. We show how the same models can be applied to a
parallel simulation environment, allowing finding varied results faster than real-time.

Keywords: cell-DEVS; DEVS; cellular models; activity tracking; discrete-event simulation.

Reference to this paper should be made as follows: Wainer, G.A. (2015) ‘The cell-DEVS
formalism as a method for activity tracking in spatial modelling and simulation’, Int. J.
Simulation and Process Modelling, Vol. 10, No. 1, pp.19–38.

Biographical notes: Gabriel A. Wainer is a Professor at Carleton University. He has authored
four books, and over 290 research articles. He is VP Conferences and was VP Publications of
SCS (Society for Modeling and Simulation International). He is Special Issues Editor of
SIMULATION, member of the editorial board of IJPSM, IEEE CiSE, and Wireless Networks
(Elsevier). He has received the IBM Eclipse Innovation Award, the SCS Leadership Award, and
various Best Paper awards; also, Carleton University's Research Achievement Award (2005,
2014), Carleton University’s Mentorship Award, the First Bernard P. Zeigler DEVS Award
(2010), SCS Outstanding Professional Award (2011) and SCS Distinguished Professional
Achievement Award (2013).

1 Introduction

Modelling and simulation (M&S) has been widely used for
studying the behaviour of complex systems in the
environmental sciences. In particular, the spreading of forest
fires is a complex phenomenon that many have tried to
study using M&S software, as in a real life situation, one
wants to predict how the fire will spread, and to have
mechanisms to study different scenarios. The behaviour of
wildfires depends on many different interrelated variables
such the weather, the topology of the geographical area, the
kind of vegetation (fuel) burning, etc., which makes it very
difficult to be predicted. These aspects make it very difficult
to build tools to predict the fire behaviour in real time
(and preferably, faster than real-time which would enable
fire experts to plan heuristics to control the spreading
quickly and safely).

Many authors in this research area have focused
on grid-based methods (in which one divides the physical

area of interest into cells, with each cell exhibiting the
same behaviour of the others) including Berjak (2002),
Balbi et al. (1999), Vasconcelos et al. (1995), Rothermel
(1972), Barros and Ball (1998), Johnston et al. (2008) and
Wang and Wainer (2014). Most of these cellular modelling
methods discretise space and time; and the model rules are
computed at regular intervals. Using these discrete-time
methods, the execution performance can be poor (especially
for large models) as all the cells are computed on every
timestep (which is not necessary, as we are only interested
in the areas of fire activity). In order to deal with these
problems, some authors proposed simplifying the
complexity of the equations, using cellular automata (CA)
as a mechanism for defining simple rules for the model’s
definition (Gutowitz, 1995). As discussed in Section 3 and
in Bonaventura et al. (2013), this has a cost in the precision
of the simulation.

Instead, the research presented in this article focuses on
a set of new techniques that can be applied to building

20 G.A. Wainer

advanced fire spreading and other environmental models.
The methods are based on modelling the spreading
phenomenon using discrete-event cellular models, and in
automating the detection of the activity in the area. These
ideas, which appeared first in Wainer and Zeigler (2000),
are based on a combination of cellular models, discrete
events systems specifications (DEVS) (Zeigler et al., 2000),
and automated activity detection (Wainer and Zeigler, 2000;
Muzy et al., 2002; Wainer, 2004; Bolduc and Vangheluwe,
2003; Muzy et al., 2005) Although these methods are based
on DEVS and cell-DEVS formalisms (Wainer, 2009;
Van Schyndel et al., 2014), which originally focused on
discrete-event models, they have been recently extended for
M&S of continuous systems (Bonaventura et al., 2013;
Cellier and Kofman, 2006; Zeigler, 2005; Kofman, 200;
Nutaro, 2003; Kofman and Junco, 2001; Giambiasi et al.,
2000). Most of these techniques are based on the concept
of quantised-DEVS systems (Q-DEVS), which represent
continuous signals as a discrete-event approximation,
represented by the crossing of an equal spaced set of
boundaries (Zeigler, 1998). These research efforts showed
that the discrete event methods in general (and DEVS in
particular), present several advantages for M&S of
continuous and hybrid systems:

• computational time reduction: for a given accuracy, the
number of calculations can decrease

• hierarchical and modular modelling, which enhances
the modelling activities

• seamless integration with models defined with other
modelling techniques

• simulation of discrete time models: they can be seen as
particular cases of discrete event methods

• generality: the discrete event paradigm provides a
uniform theory for the M&S of systems with both
continuous and discrete components.

The research presented here deals with different problems in
currently used methods. One of the main contributions is
that the models can use a simple set of equations, which can
be modified by non-experts in the field as they learn about
the phenomenon under study (providing evolvability,
i.e., the ease for modifications and model evolution). The
article also explores how these methods can decrease the
number of messages used in the simulation (and hence
the execution time, particularly if the models are executed
in distributed memory computing devices, where the
communication costs can be high). This improvement in
performance has a cost of increased error in the simulation
that can degrade the quality of the results obtained.
The methods presented are based on techniques with
bounded error and convergence, and we introduce varied
experimental examples showing how the error can be
limited while gaining in performance.

Another issue to be discussed is based on the traditional
way of collecting experimental data to derive the equations

that determine the temperature of a cell. As all existing
models use equations based on the time advance at a
specific time during the burning phase, many of the
current implementations are not efficient, and they propose
simple fixes that try to solve this problem in the best
possible way. Instead, the methods in this paper require a
shift in the experimental phase, as we need to find the
equations to determine the time the cell will pass a
boundary (instead of computing the values of the equations
as a function of time). This value, determined by the
quantum of a Q-DEVS model, should be used as a function
of the current temperature. We will discuss how to combine
these methods with dead reckoning algorithms (Lin, 1995),
which contrasts with the traditional method of using an
equation (fit from experimental data) that determines the
temperature of a cell as a function of time.

2 Background

As discussed in the Introduction, the spread of fire depends
on many different variables such as the material fuel, slope
of the terrain, geographical information of the area, weather,
etc. Many of the simulation-based methods used to study
this phenomenon are based on extensions to the partial
differential equations formalism, but new formalisms have
been defined. In this section we introduce some of these
formalisms, and we then focus on that have been employed
for modelling and simulating forest fires.

2.1 Formalisms for forest fire M&S

In the last 20 years, numerous authors used cellular
computing methods; in particular, CA (Gutowitz, 1995) for
modelling and simulating forest fires. CA are n-dimensional
infinite lattices whose elements hold a state variable and a
simple computing apparatus (Gutowitz, 1995). These local
computing functions run synchronously and in parallel,
using the present cell and neighbours. CA have been used in
the environmental sciences (Dzwinel, 2004; Bandini and
Pavesi, 2002; Bianchini et al., 1999; Inghe, 1989) and, in
particular, in fire spreading M&S (Berjak, 2002; Balbi et al.,
1999; Vasconcelos et al., 1995; Rothermel, 1972; Barros
and Ball, 1998; Johnston et al., 2008).

The synchronous evolution of CA poses constraints in
the precision of the simulation, reducing performance.
Likewise, many of the physical systems in the
environmental sciences are asynchronous in nature, and
their implementation using synchronous algorithms is not
natural. Furthermore, the discrete time used by CA makes it
difficult to handle time-triggered activity in each of the cells
or changes in the timing of the cells. Instead, cell-DEVS
(Wainer, 2009; Van Schyndel et al., 2014), an extension to
DEVS (Zeigler et al., 2000), focuses on solving these
problems. Using cell-DEVS, a cellular model is described
as a discrete event cell space in which explicit delays can be

 The cell-DEVS formalism as a method for activity tracking in spatial modelling and simulation 21

used to model the cell’s timing properties accurately
(a sketch of cell-DEVS is presented in Figure 1).

Figure 1 Informal definition of a cell-DEVS model

Each cell of a cell-DEVS model is a DEVS atomic model,
and a procedure for coupling cells is defined based on the
cell’s neighbourhood relationship. Each cell uses a
local computing function (τ), and explicit timing delay
constructions (d). As the delays use a continuous time base,
they allow accurate timing representation, providing an
elegant mechanism for dealing with timing behaviour. The
hierarchical nature of DEVS also permits the integration of

these cellular models with others defined using different
formalisms, resulting in enhanced facilities for modelling of
complex systems [a detailed definition of DEVS and
cell-DEVS specifications can be found in Wainer (2009)
and Van Schyndel et al. (2014)]. Inertial and transport
delays allow the definition of complex behaviours for each
cell, improving the definition for each of the submodels.
Transport delays have anticipatory semantics, that is, every
output event is delayed. Inertial delays allows to represent
more complex temporal behaviour because they have
preemptive semantics and an event scheduled for a future
time will not be necessarily executed.

Figure 2 depicts informally the basic contents for an
atomic cell. Upon the occurrence of an external event, the
local function τ is executed, consuming the inputs N. As the
influences must be activated only when the influencing cell
changes (Zeigler et al., 2000), the result of the local
computing function will be transmitted only when the state
changes (s ≠ s’). In that case, the state change is transmitted
after a delay of d time units. A cell will be active while
external events are received or internal events are
scheduled. The cell passivates only when there are no
further scheduled events to be transmitted.

Figure 2 Informal description of an atomic cell, (a) transport delays (b) inertial delays

(a) (b)

Figure 3 (a) A cell, its neighbourhood and the neighbour’s list (b) Connecting the output ports of cell I, j (using the neighbourhood list)
(c) Connecting input ports of cell I, j (using the inverse neighbourhood list)

Neighbourhood list:
{(0, –1), (0, 0), (0, 1), (–1, 0)}
Inverse Neighbourhood list:
{(0, 1), (0, 0), (0, –1), (1, 0)}
Note: –1: left, up;

1: right, down

1 1
, 1

Y X
ij i jP P −→ (1) 1 1

, 1
Y X

ij i jP P +← (1)

2 2Y X
ij ijP P→ (2) 2 2

Y X

ij ijP P← (2)

3 3
, 1

Y X
ij i jP P +→ (3) 3 3

, 1
Y X

ij i jP P −← (3)

4 4
1,

Y X
ij i jP P−→ (4) 4 4

1,
Y X

ij i jP P+← (4)

(a) (b) (c)

22 G.A. Wainer

A sketch of this procedure can be seen in Figure 3.
Figure 3(a) shows the neighbourhood of cell (i, j) and its
representation using the neighbour’s list. Figure 3(b) shows
how the first output port of cell (i, j) is connected
with the first input port of the first neighbour in the
list; the second port with the second neighbour, etc. Instead,
for the input ports, the connection is done through the
inverse neighbourhood list. For each pair (i, j) in the
neighbourhood, the pair (–i, –j) must be included in this list.

Finally, two extra sets are needed. Xlist is a list of cell’s
positions where the model’s external events are received.
Ylist is a list of cell’s positions whose outputs will be
collected to be sent to other models in the hierarchy. The
values of these cells will be considered the inputs and
outputs of the complete cell space.

DEVS and cell-DEVS simulators usually evolve by
means of event messages. The overhead produced by these
intermodule interactions could be high, and in that case, the
computing time employed in the synchronisation of the
active cells can overrule the performance improvements of
the asynchronous algorithms. There is always a break-even
point where discrete-event cellular models have worse
performance than their discrete-time versions (therefore, a
modeller must decide on the right method to use). From
now on, we assume that a discrete-event simulation
provides faster results than the corresponding discrete-time
CA, or that the modeller is interested in other advantages
provided by DEVS, such as model interoperability and
integration (and we focus on techniques to improve the
performance of these simulations even further). In Wainer
and Giambiasi (2001), we showed varied results comparing
the performance of models using discrete-time and
discrete-event cell spaces. In general, a discrete time model
has a constant delay for each generation (because all cells
are scanned, and always in the same order). Instead, the
discrete event transition increases linearly depending on the
number of active cells (due to the time spent handling the
event list). The performance of the traffic model improves
in several orders of magnitude depending on the complexity
of the models used (which included traditional models like
the Life game, and complex ones based on traffic
simulation).

Although DEVS was defined as a discrete-event M&S
methodology, it has been recently extended to include
continuous and hybrid systems. Most of the techniques are
based on quantised systems (Q-DEVS), whose main idea is
to represent continuous signals by the crossing of an equal
spaced set of boundaries (called the quantum). This
operation reduces substantially the frequency of message
updates, while potentially incurring into error (Zeigler,
1998). As seen in the figure, when using Q-DEVS, the
outputs are only transmitted when its difference with the
previous value is larger than a threshold. A continuous
signal is thus represented by the crossings of an equal
spaced set of boundaries, and by means of a quantiser, an
artefact that checks for the boundary crossings. This
approach requires a fundamental shift in thinking about the
system as a whole: instead of determining what value will a

dependent variable have at a given time (its state), we must
determine at what time a dependent variable will enter a
given state. When applying the quantised state systems
(QSS) method (Cellier and Kofman, 2006; Kofman and
Junco, 2001), the continuous or hybrid signals are
represented using quantisation and hysteresis. In Cellier and
Kofman (2006) and Kofman and Junco (2001), it was
proven that, when the hysteresis width is set equal to the
quantum size, we obtain the smallest possible error. This
means that if a value changes its direction with respect to
the last threshold value, the next value will have to change
two regions to be transmitted. The idea of adding hysteresis
is to change the quantum value to the double its size when
there are direction changes. Therefore, oscillations can only
be large, and cannot occur instantaneously. This provides
strong stability, convergence and error bounded properties,
as the number of updates is limited by the hysteresis
function, and it reduces the number of computations.

In quantised cell-DEVS (Wainer and Zeigler, 2000),
each cell is equipped with a quantiser, and the cell’s state
will be only informed to the neighbouring cells if it crosses
the boundary defined by the quantum size. This is shown in
Figure 4. The idea is that every cell includes a quantiser q,
the value produced by the local computing function τ is
quantised, and this value is then compared to the quantum
threshold. If the boundary was reached, an output is
provided. This output is delayed d time units using transport
or inertial delays. Instead, if the threshold was not reached,
the change is not sent to other models. A detailed discussion
on how to choose the quantum size for QSS simulations can
be found in Cellier and Kofman (2006).

Figure 4 Quantised cell-DEVS atomic cell

The performance of these models can be improved by
adding dynamic quantisation, which was defined in Wainer
and Zeigler (2000). Using this method, one can reduce the
simulation error by improving the precision of the local
computations. The numerous experiments carried out in
Wainer and Zeigler (2000). showed that, using this method,
the error in the simulation is reduced when the cells
analysed were far from the more active ones. Based on these
results, two heuristics for dynamic quantum adjustments
were defined:

a Reduce the quantum of the most inactive cells to
improve the precision of the inactive cells. Using a
quantiser, a very active cell can appear as quiescent.
Therefore, if the quantum is reduced, the error

 The cell-DEVS formalism as a method for activity tracking in spatial modelling and simulation 23

introduced can be improved. In addition, the quantum is
increased for the most active cells, improving the
overall execution time.

b Increase the quantum of the most inactive cells to make
them to passivate faster. These cells are quickly
eliminated from the simulation. Likewise, the most
active cells will have higher quanta and smaller error.

This was the first attempt in automating the detection of
activity in cellular models, and, as we will show in the
following sections, these strategies can help in improving
the simulation speed, introducing small error. The use of
quantised DEVS deactivates the cells in fewer simulation
steps, and the dynamic adjustment improves these results
further (other conditions, as the shape and size of the
neighbourhood and the dimension of the cell space are also
a major influence in performance, and the modellers should
consider these carefully).

The tests introduced in the rest of this paper were
carried out using the CD++ toolkit (Van Schyndel et al.,
2014; Wainer and Liu, 2009; Wainer, 2002), which allows
implementing DEVS and cell-DEVS models. CD++ has
been used in numerous areas, including urban traffic,
environmental science, biological systems, chemistry, etc.
(Wang and Wainer, 2014; Bonaventura et al., 2013;
Van Schyndel et al., 2014; Liu and Wainer, 2007; Wainer
and Davidson, 2007). CD++ atomic models can be
programmed and incorporated into a basic class hierarchy
programmed in C++, while coupled and cell-DEVS models
are defined using built-in languages.

2.2 Forest fire Simulation and DEVS

In this section, we briefly discuss the related work that has
been done recently in the area of forest fires simulation, in
particular those using DEVS. In general, these models
compute the temperature of a cell at discrete timesteps,
usually as an averaging function of its own temperature and
that of its neighbours. Once ignited, the cell’s temperature
increases to a peak and then falls back down, modelling the
exhaustion of fuel in the cell.

One of the most popular models in this field is due to
Rothermel (1972). Based on the environmental and
vegetation conditions, this model computes the spread ratio
(i.e., the distance and direction the fire moves in a minute)
and the intensity of the fire. Three parameter groups
determine the fire spread ratio:

a vegetation type (caloric content, mineral content and
density)

b fuel properties (the vegetation is classified according to
its size and type)

c environmental parameters (wind speed, humidity and
field slope).

The Northern Forest Fire Laboratory (NFFL) model
classifies the vegetation in 13 groups, representing the
majority of existing forest types in this region. When
Rothermel’s rules are applied to a fuel model using given

environmental parameters (the speed and direction of the
wind, the terrain topology and the dimensions of the cellular
space) it can determine the spread ratio in every direction.
Different authors introduced DEVS models based on
Rothermel’s rules (i.e., Vasconcelos et al., 1995; Barros and
Ball, 1998), and we introduced a cell-DEVS version of
Rothermel’s model in Wang and Wainer (2014) and Wainer
and Castro (2010) and an extended version using the
FireLib Library (Bevins, 2011) in Liu and Wainer (2007,
2010a).

The DELTA environment (Barros and Mendes, 1997)
deals with wildfire spreading M&S by including dynamic
structure changes. The idea is to make easy the change of
parameters dynamically, even in the middle of the
simulation. This particular model was tested and compared
against many land types, fuel types, topographies and fire
spreading information. The principal benefit of using
DS-DEVS was the improved use of resources when running
the simulation, as the formalism only runs over active cells,
and the inactive ones are kept passive for any given time.

Another interesting example of the use of DEVS for fire
spreading (that we will use to illustrate the proposed
techniques in the rest of the paper) was presented in Muzy
et al. (2005). The model is based on experimental results
obtained using a 1 m2 testbed, using earth and pine
needles as fuel, and no wind or slope (Balbi et al., 1999).
The result of the experiments produced a one-dimensional
semi-empirical model in which the temperature of each cell
is represented by a PDE. In this PDE, the energy emitted by
the cell was considered proportional to the difference
between the temperature of a cell and the ambient
temperature, as represented by the following equations:

() in the domainv
a

T σk T T K T Q
t t

∂ ∂
= − − + Δ −

∂ ∂
 (1a)

0 for an inert cellvσ
t

∂
=

∂
 (1b)

for a burning cellv
v

σ ασ
t

∂
= −

∂
 (1c)

(, ,) at the boundaryaT x y t T= (1d)

(, ,0) for the non burning cells at 0aT x y T t= = (1e)

(, ,0) for the burning cells at 0igT x y T t= = (1f)

Here, Ta is the ambient temperature, Tig is the ignition
temperature, tig(s) is the ignition time, T (K) is the
temperature, K(m2/s) is the thermal diffusion constant, α
(1/s) is the combustion time constant, σv(kg/m2) is the
vegetable surface mass, and σv0 (kg/m2) is the initial
vegetable surface mass (before the cell combustion).
Combustion occurs above the threshold temperature Tig;
above this boundary, the fuel mass decreases exponentially,
and the quantity of heat generated by the combustion
reaction per unit fuel mass is constant.

The model was originally run using two numerical
methods to discretise the model (finite elements and finite

24 G.A. Wainer

differences) to approximate the previous equations. The
authors used an approximate algebraic equation. Figure 5(a)
shows the temperature curve of a burning cell, derived from
the equations above.

Although the simulation was efficient, it did not support
program evolvability. To improve the model, a modification
of the original model (Santoni and Balbi, 1997)
used CA with continuous state variables (the cells’
temperatures). This CA was simple to define and efficient to
run, but it did not provide detailed system behaviour, as
each cell only includes a limited number of states
(and advanced behaviour in the model would require a
major reprogramming of the CA). In all cases, the authors
obtained the best performance by activating only the cells
neighbouring the front flame. Nevertheless, this model and
its optimisations were too complex to be used and
modified by non-computer science specialists. Likewise, the
performance was not enough for real time simulation.

Instead, cell-DEVS is well fitted for solving
these problems, as showed in Wang and Wainer (2014),
Muzy et al. (2005) and Van Schyndel et al. (2014). This 3D
cell-DEVS model is organised in two planes: the first one
represents the fire spreading itself (in which each cell
calculates its temperature) and the second stores the ignition
times for the corresponding cells. Figure 5(b) shows a
simplified diagram of the complete curve used for that
version of the model (Muzy et al., 2005). The curve is
divided in four stages: an inactive cell has very low
temperature and no neighbours with a temperature higher
than Ta. The unburned cells have low temperature, which is
calculated as the weighted average of the neighbourhood.
The burning cells have reached the ignition temperature Tig
(573K = 300°C), making the fuel burn; the cell’s
temperature increases until the peak, and when the fuel is
consumed, it falls back. In this phase, the temperature is
again the weighted average of the temperatures around it,

but adding an exponential that describes the temperature
behaviour. The fourth stage is burned (the cell has
exhausted its fuel, the temperature gets lower than
333K = 60°C because the fuel mass is consumed and it
cannot longer reignite). In this phase (and when the cell is
inactive) the cell’s temperature does not change (these
passive cells will respond to any temperature changes in
their neighbourhood, and they could ignite).

Figure 6 shows how we can use CD++ to build a
cell-DEVS version of the fire spreading model presented in
Muzy et al. (2005).

We use two planes to model our fire-spread model. The
plane 0 to store the cell temperatures, and plane 1 stores the
ignition time needed by the model. Figure 6 starts with the
cell-DEVS coupled model definition (including the
neighbourhood definition). Then, the ti rules show how to
store ignition times: if a cell in plane 0 starts to burn, we
record the current simulation time in plane 1. To make this
happen, we include a clause specifying to identify the layer
in which the current cell is located (cellpos(2) = x).

The macros show the rules corresponding to the
temperature calculus: cells can be inactive, unburned,
burning and burned. The first rules in the figure correspond
to the phase unburned. An unburned cell’s temperature is
lower than 573K. If the cell belongs to the plane 0, and its
temperature at the next time step is greater than the current
one, the cell will take the value given by the unburned rule.
The same occurs if the simulation time is smaller than
20 (transient period) and it is neither burning nor burned. A
cell starts burning at 573K and its temperature increases for
a while; then it start decreasing as the fuel mass is
consumed. When the temperature gets lower than 333K, the
cell enters the burned phase. The first rule in Figure 6
applies to unburned cells, whose temperature in the next
step will be higher than its current one. The second rule
applies to burning cells.

Figure 5 (a) Temperature curve (b) Simplified temperature curve (see online version for colours)

(a) (b)

Source: From Muzy et al. (2005)

 The cell-DEVS formalism as a method for activity tracking in spatial modelling and simulation 25

Figure 6 Fire spread model specification and model macros

[ForestFire] % Cell-DEVS Coupled Model Definition
dim : (100,100,2) border : nowrapped %Dimension and Borders
neighbours : (-1,0,0) (0,-1,0) (1,0,0) (0,1,0)(0,0,0)(0,0,-1)(0,0,1) %Neighbours
zone : ti { (0,0,1)..(99,99,1) } % A Special rule, ti, is used in the 2nd plane
localTransition : FireBehaviour % Everywhere else, the

[ti]
 %Postcondition Delay Precondition
rule : { time/100 } 1 { cellpos(2)=1 AND (0,0,-1)>=573 AND (0,0,0) = 1.0 }
 %If the cell below is burning (precondition), store the current time. Wait 1 time unit.

[FireBehaviour]

% Rule for Unburned Cells
rule: {#unburned} 1 {(0,0,0)<300 AND (#unburned>(0,0,0) OR time<=20)}

% If the cell is unburned (less than 300 K) and temperature is increasing, compute the first eq.
% The unburned macro computes the value according to the equations

% Rule for Unburned Cells
rule: {#burning} 1 {cellpos(2)=0 AND (((0,0,0) > #burning AND (0,0,0)>333) OR (#burning> (0,0,0)
 AND (0,0,0)>=573)) } %Burning

% If the cell is burning (less than 300 K) and temperature is increasing or decreasing, c
% the second eq. The unburned macro computes the value according to the equation

rule : { (0,0,0) } 1 { t } %Stay Burned or constant

#BeginMacro(unburned) % Equation used for unburned cells
(0.98689 * (0,0,0) + 0.0031 * ((0,-1,0) + (0,1,0) + (1,0,0) + (-1,0,0)) + 0.213)
#EndMacro

#BeginMacro(burning) % Equation used for burning cells
(0.98689*(0,0,0)+.0031*((0,-1,0)+(0,1,0)+(1,0,0)+(-1,0,0))+
 2.74*exp(-.19*((time+1)*.01-(0,0,1)))+.213)
#EndMacro

The ti rules show how we store the ignition times. The
condition is if the cell belongs to the plane 1, and the
corresponding cell in plane 0 begins to burn, the cell will
take the real time value (simulation time multiplied by the
time step).

One of the advantages of using cell-DEVS is that all
cells in the inactive or burned phases will remain passive,
and thus the calculations will be automatically confined to
the fire front. Also, as shown in Wang and Wainer (2014)
and Van Schyndel et al. (2014), changing the rules that
model the cell’s behaviour when new scientific results are
available is simple. When running this model using a linear
ignition, the prediction of spread rate and the propagation
were in agreement with the experimental data. Likewise, the
cell-DEVS execution time was better than a previously
existing model in terms of CPU and memory usage
(a 100 × 100 cells simulation could not run).

The techniques introduced in this section usually
discretise time (using a discrete event simulator on for
discrete-time models, which can introduce performance
issues). Many of the solutions mix the simulation artefacts
with the model (like dynamic structure algorithms to
improve memory usage and performance). Likewise, the
models are sometimes complex (trying to identify the front
flames), and evolvability can be compromised (mostly

experts in DEVS and the particular tools can modify these
models with ease). In the next sections, we will show how
these procedures can be automated by the simulation
engine, hiding the optimisations from the users, and
improving performance through automated detection of
activity.

3 Experiences with dynamic quantisation

As discussed in the previous sections, when using quantised
DEVS, a state value will be only informed to its neighbours
when it crosses the quantum threshold. This operation
potentially incurs into error while improving performance
substantially. The inclusion of hysteresis provides stability,
convergence and bounded errors. Thus, we propose
combining these methods with cell-DEVS and dynamic
quantisation. One of the problems with these techniques is
the choice of the quantum size: an active cell can appear as
quiescent if a quantum covers the activity area (resulting in
a larger error) or produce many oscillations if the quantum
is too small. Figure 7 shows a case where the value
computed by the cell at time t1 does not reach the threshold
(i + 1)D.

26 G.A. Wainer

Figure 7 A cell missing activity

Hence, as discussed in Figure 4, when the quantiser
compares this value with the last one computed (iD), the
cell is considered quiescent. Unless a neighbour reactivates
it, the cell will passivate and the simulation might not
evolve. Instead, if the quantum size is reduced, activity will
be detected and a smaller error will be obtained.
Conversely, if we increase the quantum size in very active
cells, the execution times can be improved (introducing
some error).

In order to automate these activities, we proposed two
different heuristics to adjust the quantum size, based on the
signal-to-noise-ratio (SNR). Let q be the base quantum, r
the adjustment ratio for the dynamic quantum, and d(t)
the quantum value used in time t. If . , ()v i D v τ s′= =
(the new computed value), and q(0) = q, then for

()
()

, ,

 | 0 | (0 [/] [/]) :

regionChange v v q

v q q v q v q

′

′= = = ≠ ∧ ≠φ

• high SNR heuristics:

() ()
() ()

, , * 1 ;

 , , * 1 ;

regionChange v v d d q ratio

regionChange v v d d q ratio

′¬ ⇒ = −

′ ⇒ = +

• low SNR heuristics:

() ()
() ()
, , * 1 ;

 , , * 1 .

regionChange v v d d q ratio

regionChange v v d d q ratio

′ ⇒ = −

′¬ ⇒ = +

The idea of the high SNR strategy is as follows: if the result
of updating the cell’s value is below the boundary (like in
Figure 7), the quantum size is reduced. Otherwise, the
quantum size is increased. When the level of activity in the
cell is low, we increase its precision, and the activity on the
cell will be now detected, reducing the quantum size allows
one to detect small levels of activity). If a cell becomes very
active and it crosses many boundaries quickly, we increase
the quantum size. This technique assumes that in regions of
high activity, the function does not change often, and we
can speed up the computation; this will increase the
simulation speed with small error added.

The low SNR strategy, instead, focuses on signals with
high SNR, as the one in Figure 8. The method increases the
quantum size every time a threshold is crossed. By doing
that, we can filter noise and extract the relevant events as
seen in Figure 8. Otherwise, the quantum size reduces. This
strategy will reduce the number of messages involved in the
simulation at a cost in higher error. Figure 8 shows a noisy
signal. Initially, we use a small quantum size (five regions
in total), and the signal is represented by a piecewise

constant trajectory with five levels. With this quantum size,
and as we cross the boundaries at every step, the quantum
size is increased. In the centre of the figure, we only have
one region for the whole spectrum of the signal. When no
change is detected during a given time, the quantum size is
reduced again, as we can see at the end of the figure, where
there are five regions and a smaller quantum again.

Figure 8 Low SNR signal and dynamic quantisation

We conducted varied experiments using both strategies in
the context of different applications. One of them is
a cell-DEVS implementation of the action potential (AP) in
the cells of human atria. This was based on a model
originally defined by Hodgkin and Huxley (1952), who
investigated the behaviour of the heart muscle membrane,
and presented the detailed behaviour of the inter-membrane
AP. Whereas solving the Hodgkin-Huxley equations
using numerical methods is feasible for one cell, the
realistic reproduction of the heart tissue (consisting of
millions of cells) is unfeasible. Consequently, different
authors tried to introduce simpler rules, using CA instead
of the Hodgkin-Huxley equations. This has a cost in
precision (Bonaventura et al., 2013), as CA use a discrete
time base, and because introducing modifications to the
basic behaviour of individual cells results in complex code
reorganisation (for instance, arrhythmias, modelled by a
different AP function for isolated groups of cells, can be
hard to code).

Using cell-DEVS with dynamic quantisation, one can
define detailed behaviour for each cell using easy to modify
rules and well defined functions for timing, which allows
one to introduce new arguments and rules with ease. This
method also discretises the model automatically, as the
dynamic quantiser detects activity in the model, improving
its precision and speed. Figure 9 illustrates this with two
examples using different quantum sizes.

Figure 9 shows the execution of the AP function
(the X axis represents one AP that takes 50 ms; the Y axis
represents the current in the heart tissue membrane, which
ranges from –20 mV to 5 mV). The figure shows how
Q-DEVS automatically discretises the model while keeping
the original rules used to generate the behaviour unchanged.
We do not need to define artificially the state values for the
regions of interest, as done for CA (in which the excitation,
relaxation and refractory periods are usually identified,
making the model very efficient to compute, but very
imprecise when one needs to study the individual cell

 The cell-DEVS formalism as a method for activity tracking in spatial modelling and simulation 27

behaviour in detail). The AP rules in the figure are
evaluated only if the cell is resting and a positive
voltage is detected in the cell’s neighbourhood. This
activity will trigger the update of the cell state using the
Hodgkin-Huxley equations.

Similarly, Figure 10 shows the results of a watershed
formation model presented in Moon et al. (1996). In this
case, the rain is absorbed first by the vegetation in the
surface of the terrain, and the rest (effective quantity of
water) is accumulated at the surface. Depending on the
topology of the land, the cells can also receive/send, water
from/to the neighbours. Part of the water received is lost due

to the filtration over the land and stones. The accumulated
water depends on the quantity of effective rainwater, and
the quantity of water from the neighbour cells minus the
water filtered by the stones and soil. Figure 10(a) shows the
initial state, which represents the slope of the terrain before
raining (each cell occupies 1 km2). The remaining figures
show the execution results after intense rain (0.0022 mm/s)
after ten minutes of simulated time, showing the changes in
the surface of (and the accumulation of water) for different
simulation heuristics and quanta (the figure represents the
surface of the terrain measured in metres).

Figure 9 Sample execution results of the heart tissue model, (a) quantum = 0 (b) quantum = 20 (see online version for colours)

(a) (b)

Figure 10 Watershed simulation results, (a) initial watershed state (b) quantum = 0 (c) quantum standard 3.5 (d) dynamic Q-DEVS high
SNR strategy 1.0 (see online version for colours)

WSHED - Topology - Time 0 95-100
90-95
85-90
80-85
75-80
70-75
65-70
60-65
55-60
50-55
45-50
40-45
35-40
30-35
25-30

WSHED - No Quantum - After 10' 95-100
90-95
85-90
80-85
75-80
70-75
65-70
60-65
55-60
50-55
45-50
40-45
35-40
30-35
25-30

(a) (b)

WSHED - Quantum 3.5 - After 10' 95-100
90-95
85-90
80-85
75-80
70-75
65-70
60-65
55-60
50-55
45-50
40-45
35-40
30-35
25-30

WSHED - Q-DEVS 1.0 After 10' 95-100
90-95
85-90
80-85
75-80
70-75
65-70
60-65
55-60
50-55
45-50
40-45
35-40

(c) (d)

28 G.A. Wainer

Figure 11 Heart tissue model, cumulative error number obtained; number of messages interchanged (see online version for colours)

In Figure 11, we show some experimental results obtained
using the automated dynamic quantisation. We analyse two
main metrics: the execution time (represented by the
number of messages involved in the simulation), and the
amount of error introduced by each strategy. We executed a
large number of tests in different categories, including
non-quantised cell-DEVS, QSS and Q-DEVS, dynamic
quantisation with high SNR and low SNR strategies.
Different combinations of the previous categories with
different quantum sizes and different update ratios were
used (we discuss representative results of the tests; more
results can be found in Wainer, 2004). Figure 11 presents
the cumulative error and the number of messages for the
heart tissue model.

The error was obtained by comparing the values in
quantised simulations against those in non-quantised cases.
The cumulative error at time t(Et) was computed as

()()
 0, 1..

, , , – ,
t t δ i n

t i t i t i tE s q s n
= < =

=∑ ∑

with n the total number of cells, δ the programmed
simulation time end, qi,t the value of the quantised value of

cell i at time t, and si,t the value of cell i at time t. In this
case, the results obtained with Q-DEVS and QSS were
similar, as QSS works better with noisy signals (it applies
hysteresis when there are changes in direction and, as seen
in Figure 9, there is only one change in direction on each
activation of this model). The lowest error was obtained
with the high SNR strategy, using an update ratio of 0.9.
When we analyse the heart tissue function, we can see it has
high SNR. There is an initial spike in the function, which
increases the quantum every time the boundary is crossed
(thus reducing the number of messages). Simultaneously,
the error is constrained (except for very large quantum
sizes). As the cell is updated every 100 ms, the quantum
reduces very quickly, and it increases quickly again,
keeping the error limited. Likewise, all the high SNR results
were better than the low SNR strategy and Q-DEVS (the
larger the ratio, the better the result). This result was
expected for this kind of model, which is a function with
high SNR. Instead, the low SNR strategy gets a very large
error (worse when the ratio is higher): on each update
during the transient period, the quantum size increases,
generating a large amount of error (and on the linear

 The cell-DEVS formalism as a method for activity tracking in spatial modelling and simulation 29

section, the quantum is reduced, gaining little precision at a
high cost for the simulation). In this case, the strategy
assumes a high SNR (which is not the case for this
function), which gets higher precision every time a
threshold is crossed. Here, every time the cell is updated,
the boundary is not crossed, thus, the quantum size
increases (highly reducing the number of messages but
increasing the error, which diverges for large quanta). A
higher update ratio makes things worse for the low SNR
strategy because it is aggressively searching for noise
(and there is none in this function).

Figure 12 presents the results of the watershed model
using the land topology presented in Figure 10. We could
observe a similar pattern than the one obtained for the heart
tissue model. Again, there was no difference between Q-
DEVS and QSS: each cell uses a linearly increasing
function. The lowest error was obtained with the dynamic
quantum with high SNR (ratio 0.9), and all the results
obtained with the high SNR strategy were better than those

obtained with low SNR and standard Q-DEVS, as the water
accumulation function has even a lower SNR than the heart
tissue AP function. Although the order of the different
heuristics is repeated, in this case the total error is smaller
than in the heart tissue case, because the cell’s function
increases slowly, and in a linear fashion.

The figure shows a particular phenomenon: using
Q-DEVS with q = 0.05 provides better results than the
dynamic strategies. Studying the behaviour of each cell, we
could see that they increase linearly approximately
0.07 units on each update. Consequently, by increasing the
quantum size, we obtain a value larger than 0.07, which
reduces again in the next simulation step. The quantum
changes oscillate around the boundary, resulting in an
increase in the total number of messages. This number
increases more when the update ratio is higher, as the
quantum varies a larger rate at every step. This does not
occur when the quantum size is fixed.

Figure 12 Q-DEVS watershed model output messages; watershed model cumulative error (see online version for colours)

30 G.A. Wainer

Using a low update ratio improves the number of messages
involved while increasing the error. By paying a small cost
in the extra execution overhead, we were able to reduce the
error involved (up to 75%). The low SNR reduces the
number of messages involved in a higher rate than high
SNR, but incurring in a higher amount of error. If we
consider, for instance, q = 1 with high SNR and ratio 0.9,
the error introduced is minimum and the number of
messages is highly reduced. If we consider q = 3.5, the error
obtained with high SNR strategy is better than the
remaining techniques with a larger quantum, while the
number of messages involved is comparable.

In every case, the lowest error was obtained with the
high SNR strategy. Updating the dynamic quantum size
with higher/lower ratios improved the simulation results
even more. Simultaneously, the number of messages was
reduced significantly. The dynamic quantisation is adapted
to improve the error involved; while making the overall
execution time highly reduced. In other experiments, we
could also see that the introduction of hysteresis permits to
obtain a more controlled behaviour, even for applications
with cells executing with a nonlinear pattern.

4 Quantising the fire spread cell-DEVS model

The level of activity is usually measured by seeing how
much the cell changes. In this section, we discuss the
cell-DEVS quantisation techniques for fire spreading
modelling. Figure 13 shows an example for a 20 × 20
propagation domain during 20 s using different quantum
sizes. Figure 13(a) shows a reduction in the message
number and the execution time, and the error obtained for
both cases, which is similar to the results in previous
sections. Figure 13(b) shows different ratios applied to
q = 1: the larger the ratio is, the lower the error (and the
longer the calculation time). For a ratio of 0.1%, the error
decreases from 21% to 9.2%, adding a small execution time
overhead (from 5:50 min to 6:33 min). The dynamic
quantisation allowed us to optimise the quantum size of
each cell according to cell’s phase. Hence, the error and the
execution time have been reduced. Nevertheless, error still
does not converge for high quanta.

As discussed in Figure 7, one of the main problems for
this model (and many other similar ones) is that time
advances from time t to t + h, and quantisation can only
improve the results up to a certain extent. We could also see
that if the quantum is too large and the energy brought by
the neighbouring cells is not enough, the temperature of the
cell cannot reach the boundary, and it remains between two
states (hence, the cell is considered inactive). These issues
will be discussed in the following sections, where we
propose new methods for solving this problem.

4.1 Quantised function definition

As discussed in Section 3, each cell will send outputs to its
neighbours if its temperature has exceeded the next
boundary. As previously shown in Figure 7, when the

quantiser compares the new computed value with the last
one computed, iD, the cell is considered quiescent, and
unless a neighbour reactivates, the cell will passivate
forever. This prevents the model from evolving, as all cells
could be considered passive and the simulation will finish.

Figure 13 Message and error comparison; error and execution
time comparison for q = 1 (see online version
for colours)

The main reason for this problem is that most of these
models use a discrete timestep whose results are then
quantised. The reason for this is that most experimental
studies are currently carried out using a time-based
approach; most equations are derived as a function of time.
Instead, we need to calculate time based on temperature,
rather than temperature as a function of time, defining the
quantised functions as a function of the quantum
boundaries. Figure 14 shows (an approximation to) the
inverse of the temperature curve for a typical cell. Given
such a function f(T), we can calculate the amount of time it
will take to reach the next quantum level as the difference
f(T2) – f(T1). This saves unnecessary calculations, as cells
will only become active when a significant change in
temperature occurs.

 The cell-DEVS formalism as a method for activity tracking in spatial modelling and simulation 31

Figure 14 Inverted temperature function, (a) increasing (b) decreasing (see online version for colours)

(a) (b)

As seen in Figure 5, the temperature function fails the
horizontal line test, and therefore is not directly invertible.
Hence, we divided it into increasing and decreasing
components, giving us two invertible functions. Figure
14(a) shows a fitted function for the increasing temperature
portion of the curve that uses a sum of two exponential
functions:

0.0005187* 0.01423*() 11.56* 784.7*T Tf T e e−= − (2)

where T is the temperature in K. This can be used for cells
in the burning up phase. Similarly, the decreasing portion
(or cooling phase) is fit with the linear function:

() 0.052*f T T= (3)

(we also found higher order functions that fit the functions
with greater accuracy if needed). Using these functions,
most of the problems discussed in previous sections are not
an issue anymore: these functions can be used for updating
the cell’s values directly, and they will not compute
intermediate values (and will only activate the cell after the
boundary has been reached). The function gives us the time
corresponding to a specific temperature, thus we can apply
dead reckoning techniques (discussed in the next section)
and use the function to calculate what the time will be when
the cell’s temperature crosses the next quantum. By doing
this, the cells remain inactive until they reach the next
quantum boundary. At that time, the cell will calculate the
new state and the next time at which they will cross the next
quantum boundary (and then it passivates until that time
arrives).

4.2 Dead reckoning

Although using dynamic Q-DEVS is straightforward,
combining dynamic quantisation with the boundary
detection (as discussed in the previous section) and dead

reckoning can improve the results considerably. To do this,
one needs to track the current slope of the function and
extrapolate from there to predict the next change. Accurate
calculations of the current temperature could be made after
either every jump (or a state variable could be kept to limit
it to every N jumps, improving the performance further).
This saves execution time, since the cells only activate on
the significant event of crossing a threshold of interest.
Collecting experimental data using this method is also more
efficient: instead of sampling every cell every 1 ms (or
similar sample time), one only needs to record the times of
boundary crossings. This would potentially save data
storage and make better use of network bandwidth in the
testbed. This sort of technique has already been applied to
distributed simulation as shown in Lin (1995), Cai et al.
(1999) and Lin and Schab (1994), and in the case of cell-
DEVS, it can be implemented at the delay function, see
Figure 15.

This cell-DEVS model uses two planes: the
temperatures are computed on the first plane (which is
detected using the cellpos() function, which returns in which
plane is the current cell), and the ignition times are in the
second plane. The cells in the Burning phase have not yet
reached their peak temperature. These cells will calculate
the delay after which they should increment their
temperature [according to the burning function defined in
equation (3) in Section 4.1]. This value now depends on the
quantum size q. As we can see, the cell value is transmitted
only after the boundary is reached, and then the cell
passivates until the next time arrives. Cells in the cooling
phase are still burning, but have reached their peak
temperature, which is falling from here on in. These cells
will calculate (according to the burning down function) the
delay after which they should decrement their temperature,
and then they become passive for that amount of time.

32 G.A. Wainer

Figure 15 Dead-reckoning implementation

[FireBehaviour]

% Rule for Unburned Cells
rule : {
 % Rule Postcondition: compute the cell’s value: will now become a Burning cell

#macro(unburned) + #macro(q) }

 % Delay for the Cell’s output: computing the speed rate according to the formulas
 { round (((11.56 * exp(0.0005187*((0,0,0)+#macro(q))) - 784.7
 *exp(-0.01423 *((0,0,0)+#macro(q)))) - (11.56* exp(0.0005187*(0,0,0)) - 784.7
 * exp(-0.01423 * (0,0,0)))) * 100)}

 % Rule Precondition: check that it is not a burning or burned cell and there is fire
 { cellpos(2)=0 AND #macro(unburned)>(0,0,0) AND (0,0,0)<573 AND (0,0,0)!=209 }

% Rule for Burning Cells
rule : {
 % Rule Postcondition: compute the cell’s value: compute the next burning value

#macro(burning) + #macro(q) }

% Delay: computing speed rate according to formulas for burning cells

 {round (((11.56*exp(0.0005187*((0,0,0)+#macro(q))) - 784.7*
 exp(-0.01423*((0,0,0)+#macro(q)))) - (11.56* exp(0.0005187*(0,0,0)) - 784.7 *
 exp(-0.01423 * (0,0,0)))) * 100)}

 % Rule Precondition: check that temperature is increasing; or decreasing and not burned

{ cellpos(2)=0 AND (((0,0,0)>#macro(burning) AND (0,0,0)>333)
 OR (#macro(burning)>(0,0,0) AND (0,0,0)>=573))AND (0,0,0) != 209 }

% Rule for Burned Celles: make the cell have a fixed value of 209 degrees as postcondition
rule : {209} 100 { cellpos(2)=0 AND (0,0,0)>#macro(burning) AND (0,0,0)<=333 AND (0,0,0)!=209 }

% Second plane (cellpos(2) = 1): stores the time when the cell below starts burning.

rule : { time * 0.01 } 1 { cellpos(2) = 1 AND (0,0,-1) >= 573 AND (0,0,0) = 1.0 }

Figure 16 (a) Execution times (b) Number of messages passed (see online version for colours)

00:00:00

00:01:26

00:02:53

00:04:19

00:05:46

00:07:12

00:08:38

00:10:05

00:11:31

00:12:58

Original Dead-Reck QDEVS

-

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

Original Dead-Reck QDEVS

(a) (b)

We ran the fire spread simulation in CD++ using dead
reckoning and the original model, in order to compare the
results of the two. The initial values used were similar to
that in the provided model, representing a line ignition
scenario. As seen in Figure 16, Q-DEVS and a combination
with dead-reckoning (the third column) reduced the
messaging between cells dramatically. The number of
messages in the simulation was reduced by more than even
when almost all cells in the model are active (gains were
even larger when only a few cells were initially activated).

As we had noted earlier, reducing the execution time of
the simulation could result in reducing the accuracy of the
model and generating a large error. As we can see in
Figure 17, the results we obtained using our model are
similar to the ones obtained with the original model, which
matches the experimental data. The cumulative average
weighted error for the simulations was below 2%, following
the trend presented in previous sections.

 The cell-DEVS formalism as a method for activity tracking in spatial modelling and simulation 33

Figure 17 Execution results at 0, 300 and 1,000 time units (see online version for colours)

Table 1 Fire1 test results (s)

Size 1 2 4 6 8 10 12 14

100 × 100 34.03 30.45 29.35 30.74 33.24 36.57 39.63 45.48

200 × 200 565.44 437.88 379.47 373.07 381.11 393.54 405.42 436.87

300 × 300 2,872.10 2,234.75 1,890.38 1,812.64 1,773.66 1,777.89 1,765.33 1,865.92

500 × 500 22,537.10 16,476.80 14,209.30 13,377.10 13,031.00 12,891.80 12,793.90 12,570.60

4.3 Parallel processing

An interesting advantage of the methods presented here is
that, being applied to the simulation engines, the original
models do not need to change. Based on these models, we
can achieve higher performance applying parallel discrete
event simulation (PDES) techniques. We built different
parallel simulation environments, namely, the conservative
CD++ (CCD++) and different Optimistic versions (Jafer
and Wainer, 2010a, 2010b; Liu and Wainer, 2010b). In all
of them, the cell-DEVS model definitions remain
unchanged. Therefore, we can apply the same models
discussed throughout this paper without any changes to the
original specifications, achieving large speedups in the
execution results. In this section, we show some results of
two of the forest fire propagation discussed in earlier
sections, based on Rothermel’s definitions. The models,
which will be called Fire1 and Fire2, differ in how the
spread rates are calculated. Fire1 uses a predetermined rate
at reduced runtime computation cost, while Fire2 invokes
the FireLib library to calculate spread rates dynamically
based on a set of parameters such as fuel type, moisture,
wind direction and speed. For all the models showed here,
we used a partition strategy that evenly divides the cell
space into horizontal rectangles.

Table 1 gives the resulting total execution time for Fire1
of varied sizes on different numbers of nodes. The best
execution times in each series are shown in bold. The
model was tested using cell spaces of 100 × 100, 200 × 200,
300 × 300, and 500 × 500, on 1 to 26 nodes. As we can see,
the conservative parallel DEVS simulator reduces the
execution time as the number of nodes increases until it
reaches the best execution time (the value in bold). We are
able to execute very large models (up to 250,000 cells). The
smallest execution time is achieved at 4, 6, 12, and 14 nodes
respectively and after that, the execution increases when

more nodes are engaged (due to the simulator’s overhead).
Also, when the number of nodes gets closer to the boundary
value, the difference among execution times is not
meaningful (for example, for the 200 × 200 model, the
execution time decreases by only 1.7% from four to six
nodes, and for 500 × 500 cells it only decreases by 1.8%
from 12 to 14 nodes). This is because when a model,
especially a small one, is partitioned onto more and
more nodes, the overhead involved in inter-processor
communication and the increasing number of support
messages eventually degrades the performance. We need to
consider the tradeoffs between the benefits of higher degree
of parallelism and the associated overhead needs when
choosing different partitioning strategies.

Figure 18 shows the results obtained when applying the
simulation engine in the Cell-BE processor for the Fire2
model (Liu et al., 2010). This model uses a 1,024 × 1,024
cell space (over one million cells) to simulate a wildfire
scenario based on predetermined spread rates for 50 virtual
hours. The model is evaluated sequentially by the active
cells at each virtual time to determine their future states.
The figure shows the overall simulation time obtained on
the Cell-BE processor (the X axis shows the simulation
results obtained when the model was executed in multiple
partitions in different cores and different number of cores),
and on an Intel E6400. On the Cell-BE, the simulation time
was reduced from over three hours (one power processing
element; PPE-optimised, which runs in only one power PC
CPU) to just 20 minutes with a kernel split on 16 synergistic
processing element (SPE). Comparing to the baseline and
optimised CD++, the simulation achieved speedups up to
134.34 and 9.74 on CBE and up to 41.23 and 1.92 on the
E6400 respectively, running faster than real-time.

34 G.A. Wainer

Figure 18 Optimistic simulation on parallel Cell-BE architecture (see online version for colours)

Figure 19 Comparing QSS-based and time-based modelica simulators: trajectories and relative error (see online version for colours)

IdealTransformer1.i1 curves comparison

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00

Time (sec)

Id
ea

lT
ra

ns
fo

rm
er

1.
i1

MCD++ interpolated by Dymola MCD++

Relative error between IT.i1 on MCD++ and IT.i1 interpolated
by Dymola (case 4.2)

0.00001%

0.00010%

0.00100%

0.01000%

0.10000%

1.00000%

10.00000%

100.00000%

1000.00000%

10000.00000%

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00

Time (sec)

R
el

at
iv

e
er

ro
r

(%
)

4.3 Higher order quantisers

One of the problems found in the fire models presented in
previous sections is derived from the fact that the quantisers
do not provide good results for the local maxima/minima as
well as values close to zero. For instance, the following
figures show the current trajectories (input/output flow) and
the error for an ideal transformer plotted based on the
results of two modelica compilers: Dymola (Dynasim
Laboratories, 2004) and M/CD++ (Wainer and D’Abreu,
2014). Dymola is a commercial toolkit for complex physical
systems M&S with full support of the Modelica language.
M/CD++ is an open-source Modelica compiler running on
CD++ that uses a quantised DEVS model to approximate
the functions, while Dymola uses an advanced solver based
on the DASSL algorithm.

On the examples in Figure 19, we can see that the
approximate solution based on QSS (which uses first order
integration methods) has a high error around zero. A higher
relative error was obtained for values near to zero on the
trajectory. The main reason for this is that using a fixed
quantum size (as provided by the quantisation function)
over the state trajectory can increase the relative error for
smaller values. Likewise, a first order approximation
requires a large number of steps to obtain the required
accuracy (Kofman et al., 2011).

In order to deal with these problems, we propose to use
higher order methods to quantise each cell (which preserve
the second, third derivatives, etc.). This approximation gives
a piecewise linear output trajectory, and one can transmit
the slope change coefficients when they differ from the

previous one in more than the quantum size Δq. Similarly,
higher order methods can be used. It has been proven that
these methods are stable and converge, and they can be
represented as cell-DEVS models. In that case, the model
will use as many input/output ports as the number of
coefficients used by the approximation functions. Then, the
cell will transmit the coefficients (one of them on each
input/output port), and this is done only when the
coefficients differ from each other by more than the
quantum size Δq.

Using a higher order approximation requires a smaller
number of activations and we need a more precise
approximation (which also takes longer to compute). With
higher order methods, we transmit more messages on each
activation (because now each cell needs to use one port per
coefficient) but the number of activations is much lower
(Kofman et al., 2011). The lower order method can be
computed much faster. Using higher order approximations
reduces the error around zero and on local maxima/minima,
at a cost of overhead in computing the higher order
function. Therefore, in order to improve these results
further, we also propose using an adaptive quantisation
function on each cell, which will make the quantum vary
according to the trajectory evolution, adapting the two
heuristics proposed in Section 3 (low and high SNR). The
idea is that, instead of adjusting the quantum size, we switch
between the different orders methods according to the
precision needed. The goal is to apply the two SNR
strategies and switch between one method and the other
dynamically according to the level of noise in the cell. In
this case, the dynamic quantiser will be in charge of

 The cell-DEVS formalism as a method for activity tracking in spatial modelling and simulation 35

changing between one method and the other according to
the level of noise detected: if the number of activations is
high, we can switch to a higher order method.

4.4 Input/output activity tracking

Another issue with earlier versions of the models introduced
in Sections 2 to 4, is that all of them use the model’s state
for activity tracking. Nevertheless, as discussed in Wainer
and Zeigler (2000) the level of activity depends not only on
the state of the particular cell, but also on the level of
activity of the neighbourhood. Therefore, we propose
analysing the level of activity as the number of external
inputs. From the point of view of cell-DEVS, a high level of
internal events can be ignored: a cell with high internal
activity will produce state changes that will be transmitted
to the neighbours. Those changes will be detected by the
neighbours and this will increase the overall local activity.
If the activity level remains high, the neighbours will react
and will influence the original cell again. If that does not
happen, and these changes are ignored by the neighbouring
cells, that means that this is not a relevant event, and the
area is, for all purposes, inactive. Likewise, a very active
cell that only includes internal events and does not
communicate them to the neighbouring cells (for instance,
because we decided to use a quantum size much larger than
the values of internal events occurring on the cell). This is
equivalent to have a non-active cell (i.e., the numerous
internal events are filtered by the quantiser; therefore, they
are not of interest and should not be simulated).

If this filtering is not done on purpose, this creates a
problem like the one discussed in Figure 7: the cells change
internally from time t to t + h; but the change is small
compared to the quantum, the cell becomes inactive, and
this could result in the whole simulation to stop. In
Muzy et al. (2005), the problem was solved by introducing a
new plane parallel to the others, which was used to keep the

model running. Figure 20 shows a different method to solve
this problem.

This version is still divided in four phases as discussed
in Section 2. In this case, the first rule applies to unburned
cells, whose temperature in the next step will be higher than
its current one. The second rule is based on the same
principles, but it applies to burning cells. The third rule is
used when the cells start burning to modify the temperature
and the ignition time. The fourth rule updates the ignition
time and the temperature of burning cells when their
temperature is decreasing. The fifth rule sets the burned flag
(temperature equals 209K) when a burning cell crosses
down the 333K threshold. In this case, the temperature temp
is stored as a cell’s input/output port and the ignition time ti
in a state variable (temp is passed to the neighbour cells,
while ti value is only used internally to the cell). Finally, if
none of the rules applies, we execute the last rule, which
keeps the cell active.

Similarly, when we analyse the original quantiser shown
in Figure 4, this organisation causes problems: the
computed value is quantised, and if the result is below the
boundary, the cell is considered quiescent and it passivates.
Nevertheless, this is not the case (for instance, in the model
above: if we use a quantum size of 200, the cell will
passivate quickly and the simulation will end. The cells are
still active internally). To deal with these issues, we
changed the cell organisation and quantiser to be as in
Figure 21.

Summarising this new cell organisation the previous
discussions, a cell will first compute the next state for the
cell using function τ. If the new value obtained is the same
than the previous for the cell (i.e., s = s’), then the cell
passivate. Otherwise, the next state change is computed,
using dead reckoning for computation of the next boundary
using the delay function d. After the delay is consumed, the
delayed value is quantised by the quantiser q, and if the
threshold is passed, the value is transmitted.

Figure 20 Multiple variables and ports: keeping the model running

rule : { ~temp := #macro(unburned); } 1 { (0,0)~temp!=209 AND (0,0)~temp<573
 AND #macro(unburned) > (0,0)~temp } %Unburned

rule : { ~temp := #macro(burning); } 1 { (0,0)~temp>333 AND ((0,0)~temp<573
 OR (0,0)~ti!=1.0) AND (0,0)~temp > #macro(burning) }
rule : { #macro(burning) } 1 { (0,0)> 333 AND ((0,0)< 573 OR $ti != 1.0) AND
 (0,0)>#macro(burning) } %Burning

rule : { #macro(burning) } { $ti := if($ti = 1.0, time/100, $ti); } 1
 { (0,0)>=573 AND #macro(burning)>=(0,0) }
rule : { #macro(burning) } { $ti := time / 100; } 1
 { $ti=1.0 AND (0,0)>=573 AND #macro(burning)<(0,0) } % ti

rule : { ~temp := 209; } 100 { (0,0)~temp > #macro(burning) AND
 (0,0)~temp <= 333 AND (0,0)~temp != 209 } %Burned

rule : { (0,0) } {~t := time+1 } { t } % Otherwise, keep the model running

36 G.A. Wainer

Figure 21 New quantised atomic cell

In addition, the idea is to compute the level of activity at the
cell’s inputs N, and we can apply our heuristics for adjusting
the quantum size depending on this level of activity.

4.5 Quantum size adjustment

One of the main problems with dynamic quantisation is how
to choose the quantum size, and how to limit the changes in
order to obtain good execution results. As discussed in
Section 4.5, the idea is to compute the level of activity at the
cell’s inputs N, and to apply our heuristics for adjusting the
quantum size depending on this level of activity.
Nevertheless, we need to control the quantum size: although
a limit for the relation between message number and error
was found in Zeigler (1998), which is depicted in
Figure 22 using dynamic quantisation methods (which
change the quantum size dynamically) could have problems.
In order to do this, we propose a method based on the
working set algorithms used traditionally for virtual
memory management in demand paging operating systems.
The idea of these algorithms is to use information provided
implicitly by the running process to adjust the virtual
memory size. In our adaptation, we use the quantum as a
measure: a large quantum size means that the number of
messages (and CPU time) is reduced, but the error
increases; a small quantum size implies a small error (and a
cost in speed). Then, when we have a large number of
messages, most of the time the CPU will be busy computing
results with a high precision that is probably not needed.

Figure 22 Message frequency model (see online version
for colours)

Q Size

msgs

E
rr

or
/C

P
U

 U
se error

Incorrect Results
(High Error Zone)

High Overhead Zone

Considering these facts, we propose to control the quantum
size indirectly, using a method that gave good results when
applied to model virtual memory systems. This method,
called the “page fault frequency model” (Wulf, 1969) is an
algorithm that allows avoiding thrashing with a very low
level of overhead. Our technique, called the ‘message
frequency model’, applies the same strategy and it studies
the number of messages in a cell, using this information to
constrain the modification of the quantum sizes. As seen in
Figure 22, when the level of activity increases, so it does
the number of messages involved in the simulation
(exponentially). Instead, if the number of messages is low,
that means that the degree of activity is low (and we have a
very large error). In Figure 22, this means that we could end
outside the shaded area, in which the number of messages is
small and the error very high, or the error is limited and the
overhead high. The goal of this method is to remain in the
shaded area. To do that, we count the number of messages
in a period, and choose a minimum and maximum threshold
(defined by the horizontal lines in the figure), which allows
maintaining the level of activity high, while reducing the
simulation overhead. If the number of messages is below
the lower boundary for the cell, this means that the amount
of error is very high. Therefore, at that point, we must
reduce the quantum size. Likewise, if the number of
messages is too high, this is a signal of high overhead, and
we increase the quantum size.

Deciding the quantum size based on this algorithm only
introduces a minimum extra overhead (we just need a timer
and a message counter, and to compare these values in order
to decide if the quantum size should change and how).

A different method for adjusting the dynamic quantum
efficiently is to limit the number of quantum sizes to a
reduced number of categories, only allowing changing
between them, as in Figure 23.

Figure 23 Multiple quantum categories

 q = 0.1

q = 0.5

q = 1

q = 10

The idea is to have a few limited quantum categories,
starting with a small size (in our example, 0.1). If the
activity is high (i.e., we surpass the threshold), we switch to
the larger quantum category. If activity is low, we reduce
quantum to a smaller category. In this way, the model will
adjust to the right quantum size dynamically: if we have a
very active model, it will change to the larger quantum,
until it is large enough for the current level of activity. At
that point, the quantum size will not change until there is a
change in the activity level. The idea is that, when the
threshold is not passed, we stay at the current quantum

 The cell-DEVS formalism as a method for activity tracking in spatial modelling and simulation 37

level. In order to avoid the problems of Figure 7, the
simulator for each model will change to a lower category
after a given amount of time, after which the quantum is
adjusted to the lower category. A more aggressive policy is
to move directly to the smallest quantum category, giving
the model a second chance to run with high precision.

5 Conclusions

We have introduced different methods based on DEVS and
cell-DEVS, which can be used to speed up the simulation
and simplify the modelling of fire spreading and other
environmental spatial models. The methods use a
combination of quantised DEVS, dead reckoning, and
dynamic quantum adjustment according to the level of
activity. We have showed how these methods can be used to
track the activity in the model. In the long term we want to
provide guidelines to reduce the intervention by the
modeller to a minimum, based on heuristics selection of the
different techniques.

The method also allows the modellers to use a simple
set of equations. This provides evolvability, and models can
be modified by non-experts in the field (as they learn about
the phenomenon under study). We also showed a different
method for finding the equations to determine the time the
cell will pass a boundary (instead of computing the values
of the equations as a function of time). This value,
determined by the quantum of a Q-DEVS model, should be
used as a function of the current temperature.

The techniques presented here were able to improve
performance, and in the case of combining them with
parallel processing, we could simulate a 50-hour wildfire in
approximately 20 minutes, giving the chance to conduct
multiple studies in real time for fire contention.
Quantisation was implemented by calculating the time
steps between temperatures, instead of the temperatures at
time steps. This achieved the goal of keeping all cells
inactive until a significant event takes place. Another
modification was to keep cells in the unburned state passive
until they are seen to reach the ignition temperature. This
increased performance, but had problems with accuracy,
and required some prior knowledge of how the fire would
develop to obtain good equations. We found that the general
direction and speed of fire spread was maintained by our
model, although some finer details such as peak
temperatures and temperatures of cells at the fire front lost
accuracy.

We are currently experimenting with new extensions
and with the implementation of some of the techniques
introduced in this article. We are interested in providing
generic guidelines, and define a systematic method in order
to help the modeller to decide which of the different
strategies is best suited for a particular problem, based on
the characteristics of the problem and the objectives to
achieve.

References
Balbi, J.H., Santoni, P.A. and Dupuy, J.L. (1999) ‘Dynamic

modeling of fire spread across a fuel bed’, International
Journal of Wildland Fire, Vol. 9, No. 4, pp.275–284.

Bandini, S. and Pavesi, G. (2002) ‘Simulation of vegetable
population dynamics based on cellular automata’,
Proceedings of 5th International Conference on Cellular
Automata for Research and Industry, Geneva, Switzerland,
LNCS, Vol. 2493.

Barros, F. and Ball, G.L. (1998) ‘Fire modeling using dynamic
structure cellular automata’, 3rd International Conference on
Forest Fire Research, 14th Conference on Fire and Forest
Meteorology, Vol. 1, pp.879–888.

Barros, F.J. and Mendes, M.T. (1997) ‘Forest fire modelling and
simulation in the DELTA environment’, Simul. Pract.
Theory, Vol. 5, No. 3, pp.185–197.

Berjak, S.G. (2002) ‘An improved cellular automaton model for
simulating fire in a spatially heterogeneous Savanna system’,
Ecol. Model., Vol. 148, No. 2, p.133.

Bevins, C.D. (2011) fireLib User Manual and Technical
Reference, 20 June [online] http://www.fire.org/downloads/
fireLib/1.0.4/firelib.pdf.

Bianchini, A., Indovina, F. and Rinaldi, E. (1999) ‘Cellular
automata for the study of the diffusion of pollutants within the
basins of the lagoon: the case of the Venetian lagoon’,
in Proceedings of 6th International Conference on Computers
in Urban Planning and Urban Management. Venice, Italy.

Bolduc, J. and Vangheluwe, H. (2003) ‘Mapping ODEs to DEVS:
adaptive quantization’, Summer Computer Simulation
Conference, pp.401–407, Montréal, Canada.

Bonaventura, M., Wainer, G. and Castro, R. (2013) ‘A graphical
modeling and simulation environment for DEVS’,
Simulation: Transactions of the Society for Modeling and
Simulation International, January, Vol. 89, No. 1, pp.4–27.

Cai, W., Lee, F.B.S. and Chen, L. (1999) ‘An auto-adaptive dead
reckoning algorithm for distributed interactive simulation’,
in Proceedings of Pads, p.82.

Cellier, F.E. and Kofman, E. (2006) Continuous System
Simulation, Springer-Verlag, New York.

Dynasim Laboratories (2004) Dassault Systems, Dymola
[online] http://www.3ds.com/products-services/catia/
capabilities/modelica-systems-simulation-info/dymola/
(accessed January 2014).

Dzwinel, W. (2004) ‘A cellular automata model of population
infected by periodic plague’, in Proceedings of ACRI, LNCS,
Vol. 3305, pp.464–473.

Filippi, J., Morandini, F., Balbi, J.H. and Hill, D.R.C. (2010)
‘Discrete event front-tracking simulation of a physical
fire-spread model’, Simulation, Vol. 86, No. 10, pp.629–646.

Giambiasi, N., Escude, B. and Ghosh, S. (2000) ‘GDEVS:
a generalized discrete event specification for accurate
modeling of dynamic systems’, Transactions of the SCS,
Vol. 17, pp.120–134.

Gutowitz, H. (1995) ‘Cellular automata and the sciences of
complexity. Part I-II’, Complexity, Vol. 1, No. 5, pp.16–22.

Hodgkin, A. and Huxley, A. (1952) ‘A quantitative description of
membrane current and its application to conduction and
excitation in nerve’, Journal of Physiology, Vol. 117, No. 4,
pp.500–544.

38 G.A. Wainer

Inghe, O. (1989) ‘Genet and ramet survivorship under different
mortality regimes – a cellular automata model’, Journal of
Theoretical Biology, Vol. 138, No. 2, pp.257–270.

Jafer, S. and Wainer, G. (2010a) ‘Conservative DEVS: a novel
protocol for parallel conservative simulation of DEVS and
cell-DEVS models’, in Proceedings of Proceedings of the
Spring Simulation Multiconference.

Jafer, S. and Wainer, G. (2010b) ‘Conservative vs. optimistic
parallel simulation of DEVS and cell-DEVS: a comparative
study’, Proceedings of the 2010 ACM/SCS Summer Computer
Simulation Conference.

Johnston, P., Kelso, J. and Milne, G.J. (2008) ‘Efficient simulation
of wildfire spread on an irregular grid’, International Journal
of Wildland Fire, Vol. 17, No. 5, pp.614–627.

Kofman, E. (2003) ‘Quantized-state control. A method for discrete
event control of continuous systems’, Latin American Applied
Research Journal, Vol. 33, No. 4, pp.339–406.

Kofman, E. and Junco, S. (2001) ‘Quantized state systems.
A DEVS approach for continuous systems simulation’,
Transactions of SCS, Vol. 18, pp.123–132.

Kofman, E., Cellier, F. and Migoni, G. (2011) ‘Continuous
systems simulation and control’, in G. Wainer and
E. Mosterman (Eds.): Discrete-Event Modeling and
Simulation: Theory and Applications (Computational
Analysis, Synthesis, and Design of Dynamic Systems,
CRC Press.

Lin, K. (1995) ‘Dead reckoning and distributed interactive
simulation’, in Distributed Interactive Simulation Systems for
Simulation and Training in the Aerospace Environment;
Proceedings of the Conference, Orlando, FL, USA, pp.16–36.

Lin, K.C. and Schab, D.E. (1994) ‘The performance assessment of
the dead reckoning algorithms in DIS’, Simulation, Vol. 63,
No. 5, p.318.

Liu, Q. and Wainer, G. (2007) ‘Parallel environment for DEVS
and cell-DEVS models’, in Q. Liu and G. Wainer (Eds.):
Simulation: Transactions of the Society for Modeling and
Simulation International, Vol. 83, No. 6, pp.449–471.

Liu, Q. and Wainer, G. (2010a) ‘Accelerating large-scale DEVS-
based simulation on the cell processor’, Proceedings of
TMS/DEVS, Orlando, FL.

Liu, Q. and Wainer, G. (2010b) ‘Exploring multi-grained
parallelism in compute-intensive DEVS simulations’,
Proceedings of the 24th ACM/IEEE/SCS Workshop on
Principles of Advanced and Distributed Simulation (PADS),
Atlanta, GA.

Liu, Q., Wainer, G., Lu, L. and Perrone, M. (2010) ‘Novel
performance optimization of large-scale discrete-event
simulation on the cell broadband engine’, in Proceedings of
High Performance Computing and Simulation (HPCS),
International Conference on, pp.108–114.

Moon, Y., Zeigler, B., Ball, G. and Guertin, D.P. (1996) ‘DEVS
representation of spatially distributed systems: validity,
complexity reduction’, Proc.of 6th Annnual Conference on
Artificial Intelligence, Simulation & Planning in High
Autonomy Systems, La Jolla, CA, pp.288–296.

Muzy, A., in nocenti, E., Aiello, A., Santucci, J. and Wainer, G.
(2005) ‘Discrete-event modeling and simulation of fire
spreading across a fuel bed’, Simulation: Transactions of the
Society for Modeling and Simulation International, Vol. 81,
No. 2, pp.103–117.

Muzy, A., Wainer, G., Innocenti, E., Aiello, A. and Santucci, J.
(2002) ‘Dynamic and discrete quantization for simulation
time improvement: fire spreading application using the
CD++ tool’, Proceedings of Winter Simulation Conference
San Diego, USA.

Nutaro, J. (2003) Parallel Discrete Event Simulation with
Application to Continuous Systems, PhD thesis, University of
Arizona, Tucson, AZ.

Rothermel, R. (1972) A Mathematical Model for Predicting Fire
Spread in Wildland Fuels, Research Paper INT-115.Ogden,
UT: US Department of Agriculture, Forest Service, in
termountain Forest and Range Experiment Station, Vol. 40.

Van Schyndel, M., Wainer, G.A., Goldstein, R., Mogk, J. and
Khan, A. (2014) ‘On the definition of a computational fluid
dynamic solver using cellular discrete-event simulation’,
Journal of Computational Science (Elsevier), November,
Vol. 5, No. 6, pp.882–890.

Vasconcelos, M., Pereira, J. and Zeigler, B. (1995) ‘Simulation of
fire growth using discrete event hierarchical modular models.
EARSeL’, Advances in Remote Sensing, Vol. 4, No. 3,
pp.54–62.

Wainer, G. (2002) ‘CD++: a toolkit to develop DEVS models’,
Software Practice and Experience, Vol. 32, No. 3, p.1261.

Wainer, G. (2004) ‘Performance analysis of continuous cell-DEVS
models’, in Proceedings of High Performance Computing &
Simulation; 18th European Simulation Multiconference,
Magdeburg, Germany.

Wainer, G. (2009) Discrete-Event Modeling and Simulation: A
Practitioner’s Approach, Taylor and Francis, Boca Ratón,
FL.

Wainer, G. and Castro, R. (2010) ‘A survey on the application of
the Cell-DEVS formalism in cellular models’, Journal of
Cellular Automata, Vol. 5, No. 6, pp.509–524.

Wainer, G. and D’Abreu, M. (2014) ‘Using a discrete-event
system specifications (DEVS) for designing a modelica
compiler’, Advances in Engineering Software, Elsevier,
September.

Wainer, G. and Davidson, A. (2007) ‘Defining a traffic modeling
language using cellular discrete-event abstractions’, Journal
of Cellular Automata, Vol. 17, No. 4, p.10.

Wainer, G. and Giambiasi, N. (2001) ‘Application of the
cell-DEVS paradigm for cell spaces modeling and
simulation’, Simulation, Vol. 76, No. 1, pp.22–39.

Wainer, G. and Liu, Q. (2009) ‘Tools for graphical specification
and visualization of DEVS models’, Simulation, Vol. 85,
No. 3, pp.131–158.

Wainer, G. and Zeigler, B.P. (2000) ‘Experimental results of timed
cell-DEVS quantization, AI and simulation’, AIS 2000,
pp.203–208, Tucson, AZ.

Wang, S. and Wainer, G. (2014) ‘A simulation as a service
methodology with application for crowd modeling, simulation
and visualization’, Accepted for publication in Simulation:
Transactions of the Society for Modeling and Simulation
International, October 2014.

Wulf, W. (1969) ‘Performance monitors for multiprogramming
systems’, Proceedings of the 2nd.ACM Symposium on
Operating Systems Principles, pp.175–181.

Zeigler, B.P. (1998) DEVS Theory of Quantization, Tech.
Rep. DARPA Contract N6133997K-0007, ECE Department,
the University of Arizona, Tucson, AZ.

Zeigler, B.P. (2005) ‘Continuity and change (activity) are
fundamentally related in DEVS simulation of continuous
systems’, in Proceedings of Proceedings of AIS, Artificial
Intelligence, Simulation and Planning, pp.1–17, Jeju Island,
Korea.

Zeigler, B.P., Praehofer, H. and Kim, T.G. (2000) Theory of
Modeling and Simulation, 2nd ed., Academic Press,
New York.

